Package 'sigminer'

Title: Extract, Analyze and Visualize Mutational Signatures for Genomic Variations
Description: Genomic alterations including single nucleotide substitution, copy number alteration, etc. are the major force for cancer initialization and development. Due to the specificity of molecular lesions caused by genomic alterations, we can generate characteristic alteration spectra, called 'signature' (Wang, Shixiang, et al. (2021) <DOI:10.1371/journal.pgen.1009557> & Alexandrov, Ludmil B., et al. (2020) <DOI:10.1038/s41586-020-1943-3> & Steele Christopher D., et al. (2022) <DOI:10.1038/s41586-022-04738-6>). This package helps users to extract, analyze and visualize signatures from genomic alteration records, thus providing new insight into cancer study.
Authors: Shixiang Wang [aut, cre] , Ziyu Tao [aut] , Huimin Li [aut] , Tao Wu [aut] , Xue-Song Liu [aut, ctb] , Anand Mayakonda [ctb]
Maintainer: Shixiang Wang <[email protected]>
License: MIT + file LICENSE
Version: 2.3.2
Built: 2025-01-10 03:04:39 UTC
Source: https://github.com/ShixiangWang/sigminer

Help Index


Add Horizontal Arrow with Text Label to a ggplot

Description

Add Horizontal Arrow with Text Label to a ggplot

Usage

add_h_arrow(
  p,
  x,
  y,
  label = "optimal number",
  space = 0.01,
  vjust = 0.3,
  seg_len = 0.1,
  arrow_len = unit(2, "mm"),
  arrow_type = c("closed", "open"),
  font_size = 5,
  font_family = c("serif", "sans", "mono"),
  font_face = c("plain", "bold", "italic")
)

Arguments

p

a ggplot.

x

position at x axis.

y

position at y axis.

label

text label.

space

a small space between arrow and text.

vjust

vertical adjustment, set to 0 to align with the bottom, 0.5 for the middle, and 1 (the default) for the top.

seg_len

length of the arrow segment.

arrow_len

length of the arrow.

arrow_type

type of the arrow.

font_size

font size.

font_family

font family.

font_face

font face.

Value

a ggplot object.


Add Text Labels to a ggplot

Description

Add text labels to a ggplot object, such as the result from show_sig_profile.

Usage

add_labels(
  p,
  x,
  y,
  y_end = NULL,
  n_label = NULL,
  labels = NULL,
  revert_order = FALSE,
  font_size = 5,
  font_family = "serif",
  font_face = c("plain", "bold", "italic"),
  ...
)

Arguments

p

a ggplot.

x

position at x axis.

y

position at y axis.

y_end

end position of y axis when n_label is set.

n_label

the number of label, when this is set, the position of labels at y axis is auto-generated according to y and y_end.

labels

text labels or a similarity object from get_sig_similarity.

revert_order

if TRUE, revert label order.

font_size

font size.

font_family

font family.

font_face

font face.

...

other parameters passing to ggplot2::annotate.

Value

a ggplot object.

Examples

# Load mutational signature
load(system.file("extdata", "toy_mutational_signature.RData",
  package = "sigminer", mustWork = TRUE
))
# Show signature profile
p <- show_sig_profile(sig2, mode = "SBS")

# Method 1
p1 <- add_labels(p,
  x = 0.75, y = 0.3, y_end = 0.9, n_label = 3,
  labels = paste0("text", 1:3)
)
p1

# Method 2
p2 <- add_labels(p,
  x = c(0.15, 0.6, 0.75), y = c(0.3, 0.6, 0.9),
  labels = paste0("text", 1:3)
)
p2

# Method 3
sim <- get_sig_similarity(sig2)
p3 <- add_labels(p,
  x = c(0.15, 0.6, 0.75), y = c(0.25, 0.55, 0.8),
  labels = sim, font_size = 2
)
p3

A Best Practice for Signature Extraction and Exposure (Activity) Attribution

Description

These functions are combined to provide a best practice for optimally identifying mutational signatures and attributing their activities (exposures) in tumor samples. They are listed in order to use.

  • bp_extract_signatures() for extracting signatures.

  • bp_show_survey() for showing measures change under different signature numbers to help user select optimal signature number. At default, an aggregated score (named score) is generated to suggest the best solution.

  • bp_show_survey2() for showing simplified signature number survey like show_sig_number_survey().

  • bp_get_sig_obj() for get a (list of) Signature object which is common used in sigminer for analysis and visualization.

  • bp_attribute_activity() for optimizing signature activities (exposures). NOTE: the activities from extraction step may be better! You can also use sig_extract to get optimal NMF result from multiple NMF runs. Besides, you can use sig_fit to quantify exposures based on signatures extracted from bp_extract_signatures().

  • bp_extract_signatures_iter() for extracting signature in a iteration way.

  • bp_cluster_iter_list() for clustering (hclust with average linkage) iterated signatures to help collapse multiple signatures into one. The result cluster can be visualized by plot() or factoextra::fviz_dend().

  • bp_get_clustered_sigs() for getting clustered (grouped) mean signatures from signature clusters.

  • Extra: bp_get_stats() for obtaining stats for signatures and samples of a solution. These stats are aggregated (averaged) as the stats for a solution (specific signature number).

  • Extra: bp_get_rank_score() for obtaining rank score for all signature numbers.

Usage

bp_extract_signatures(
  nmf_matrix,
  range = 2:5,
  n_bootstrap = 20L,
  n_nmf_run = 50,
  RTOL = 0.001,
  min_contribution = 0,
  cores = min(4L, future::availableCores()),
  cores_solution = min(cores, length(range)),
  seed = 123456L,
  handle_hyper_mutation = TRUE,
  report_integer_exposure = FALSE,
  only_core_stats = nrow(nmf_matrix) > 100,
  cache_dir = file.path(tempdir(), "sigminer_bp"),
  keep_cache = FALSE,
  pynmf = FALSE,
  use_conda = TRUE,
  py_path = "/Users/wsx/anaconda3/bin/python"
)

bp_extract_signatures_iter(
  nmf_matrix,
  range = 2:5,
  sim_threshold = 0.95,
  max_iter = 10L,
  n_bootstrap = 20L,
  n_nmf_run = 50,
  RTOL = 0.001,
  min_contribution = 0,
  cores = min(4L, future::availableCores()),
  cores_solution = min(cores, length(range)),
  seed = 123456L,
  handle_hyper_mutation = TRUE,
  report_integer_exposure = FALSE,
  only_core_stats = nrow(nmf_matrix) > 100,
  cache_dir = file.path(tempdir(), "sigminer_bp"),
  keep_cache = FALSE,
  pynmf = FALSE,
  use_conda = FALSE,
  py_path = "/Users/wsx/anaconda3/bin/python"
)

bp_cluster_iter_list(x, k = NULL, include_final_iteration = TRUE)

bp_get_clustered_sigs(SigClusters, cluster_label)

bp_get_sig_obj(obj, signum = NULL)

bp_get_stats(obj)

bp_get_rank_score(obj)

bp_show_survey2(
  obj,
  x = "signature_number",
  left_y = "silhouette",
  right_y = "L2_error",
  left_name = left_y,
  right_name = right_y,
  left_color = "black",
  right_color = "red",
  left_shape = 16,
  right_shape = 18,
  shape_size = 4,
  highlight = NULL
)

bp_show_survey(
  obj,
  add_score = FALSE,
  scales = c("free_y", "free"),
  fixed_ratio = TRUE
)

bp_attribute_activity(
  input,
  sample_class = NULL,
  nmf_matrix = NULL,
  method = c("bt", "stepwise"),
  bt_use_prop = FALSE,
  return_class = c("matrix", "data.table"),
  use_parallel = FALSE,
  cache_dir = file.path(tempdir(), "sigminer_attribute_activity"),
  keep_cache = FALSE
)

Arguments

nmf_matrix

a matrix used for NMF decomposition with rows indicate samples and columns indicate components.

range

a numeric vector containing the ranks of factorization to try. Note that duplicates are removed and values are sorted in increasing order. The results are notably returned in this order.

n_bootstrap

number of bootstrapped (resampling) catalogs used. When it is 0, the original (input) mutation catalog is used for NMF decomposition, this is not recommended, just for testing, user should not set it to 0.

n_nmf_run

number of NMF runs for each bootstrapped or original catalog. At default, in total n_bootstrap x n_nmf_run (i.e. 1000) NMF runs are used for the task.

RTOL

a threshold proposed by Nature Cancer paper to control how to filter solutions of NMF. Default is ⁠0.1%⁠ (from reference #2), only NMF solutions with KLD (KL deviance) <= ⁠100.1%⁠ minimal KLD are kept.

min_contribution

a component contribution threshold to filer out small contributed components.

cores

number of cpu cores to run NMF.

cores_solution

cores for processing solutions, default is equal to argument cores.

seed

a random seed to make reproducible result.

handle_hyper_mutation

default is TRUE, handle hyper-mutant samples.

report_integer_exposure

if TRUE, report integer signature exposure by bootstrapping technique.

only_core_stats

if TRUE, only calculate the core stats for signatures and samples.

cache_dir

a directory for keep temp result files.

keep_cache

if TRUE, keep cache results.

pynmf

if TRUE, use Python NMF driver Nimfa. The seed currently is not used by this implementation, so the only way to reproduce your result is setting keep_cache = TRUE.

use_conda

if TRUE, create an independent conda environment to run NMF.

py_path

path to Python executable file, e.g. '/Users/wsx/anaconda3/bin/python'. In my test, it is more stable than use_conda=TRUE. You can install the Nimfa package by yourself or set use_conda to TRUE to install required Python environment, and then set this option.

sim_threshold

a similarity threshold for selecting samples to auto-rerun the extraction procedure (i.e. bp_extract_signatures()), default is 0.95.

max_iter

the maximum iteration size, default is 10, i.e., at most run the extraction procedure 10 times.

x

result from bp_extract_signatures_iter() or a list of Signature objects.

k

an integer sequence specifying the cluster number to get silhouette.

include_final_iteration

if FALSE, exclude final iteration result from clustering for input from bp_extract_signatures_iter(), not applied if input is a list of Signature objects.

SigClusters

result from bp_cluster_iter_list().

cluster_label

cluster labels for a specified cluster number, obtain it from SigClusters$sil_df.

obj

a ExtractionResult object from bp_extract_signatures().

signum

a integer vector to extract the corresponding Signature object(s). If it is NULL (default), all will be returned.

left_y

column name for left y axis.

right_y

column name for right y axis.

left_name

label name for left y axis.

right_name

label name for right y axis.

left_color

color for left axis.

right_color

color for right axis.

left_shape, right_shape, shape_size

shape setting.

highlight

a integer to highlight a x.

add_score

if FALSE, don't show score and label optimal points by rank score.

scales

one of "free_y" (default) and "free" to control the scales of plot facet.

fixed_ratio

if TRUE (default), make the x/y axis ratio fixed.

input

result from bp_extract_signatures() or a Signature object.

sample_class

a named string vector whose names are sample names and values are class labels (i.e. cancer subtype). If it is NULL (the default), treat all samples as one group.

method

one of 'bt' (use bootstrap exposure median, from reference #2, the most recommended way in my personal view) or stepwise' (stepwise reduce and update signatures then do signature fitting with last signature sets, from reference #2, the result tends to assign the contribution of removed signatures to the remaining signatures, maybe I misunderstand the paper method? PAY ATTENTION).

bt_use_prop

this parameter is only used for bt method to reset low contributing signature activity (relative activity ⁠<0.01⁠). If TRUE, use empirical P value calculation way (i.e. proportion, used by reference ⁠#2⁠), otherwise a t.test is applied.

return_class

string, 'matrix' or 'data.table'.

use_parallel

if TRUE, use parallel computation based on furrr package. It can also be an integer for specifying cores.

Details

The signature extraction approach is adopted from reference #1, #2, and the whole best practice is adopted from the pipeline used by reference #3. I implement the whole procedure with R code based on the method description of papers. The code is well organized, tested and documented so user will find it pretty simple and useful. Besides, the structure of the results is very clear to see and also visualize like other approaches provided by sigminer.

Value

It depends on the called function.

Measure Explanation in Survey Plot

The survey plot provides a pretty good way to facilitate the signature number selection. A score measure is calculated as the weighted mean of selected measures and visualized as the first sub-plot. The optimal number is highlighted with red color dot and the best values for each measures are also highlighted with orange color dots. The detail of 6 measures shown in plot are explained as below.

  • score - an aggregated score based on rank scores from selected measures below. The higher, the better. When two signature numbers have the same score, the larger signature number is preferred (this is a rare situation, you have to double check other measures).

  • silhouette - the average silhouette width for signatures, also named as ASW in reference #2. The signature number with silhouette decreases sharply is preferred.

  • distance - the average sample reconstructed cosine distance, the lower value is better.

  • error - the average sample reconstructed error calculated with L2 formula (i.e. L2 error). This lower value is better. This measure represents a similar concept like distance above, they are all used to quantify how well sample mutation profiles can be reconstructed from signatures, but distance cares the whole mutation profile similarity while error here cares value difference.

  • ⁠pos cor⁠ - the average positive signature exposure correlation coefficient. The lower value is better. This measure is constructed based on my understanding about signatures: mutational signatures are typically treated as independent recurrent patterns, so their activities are less correlated.

  • similarity - the average similarity within in a signature cluster. Like silhouette, the point decreases sharply is preferred. In the practice, results from multiple NMF runs are clustered with "clustering with match" algorithm proposed by reference #2. This value indicates if the signature profiles extracted from different NMF runs are similar.

Author(s)

Shixiang Wang [email protected]

References

Alexandrov, Ludmil B., et al. "Deciphering signatures of mutational processes operative in human cancer." Cell reports 3.1 (2013): 246-259.

Degasperi, Andrea, et al. "A practical framework and online tool for mutational signature analyses show intertissue variation and driver dependencies." Nature cancer 1.2 (2020): 249-263.

Alexandrov, Ludmil B., et al. “The repertoire of mutational signatures in human cancer.” Nature 578.7793 (2020): 94-101.

See Also

See sig_estimate, sig_extract, sig_auto_extract, sigprofiler_extract for other approaches.

Examples

data("simulated_catalogs")

# Here I reduce the values for n_bootstrap and n_nmf_run
# for reducing the run time.
# In practice, you should keep default or increase the values
# for better estimation.
#
# The input data here is simulated from 10 mutational signatures

# e1 <- bp_extract_signatures(
#   t(simulated_catalogs$set1),
#   range = 8:12,
#   n_bootstrap = 5,
#   n_nmf_run = 10
# )
#
# To avoid computation in examples,
# Here just load the result
# (e1$signature and e1$exposure set to NA to reduce package size)
load(system.file("extdata", "e1.RData", package = "sigminer"))


# See the survey for different signature numbers
# The suggested solution is marked as red dot
# with highest integrated score.
p1 <- bp_show_survey(e1)
p1
# You can also exclude plotting and highlighting the score
p2 <- bp_show_survey(e1, add_score = FALSE)
p2

# You can also plot a simplified version
p3 <- bp_show_survey2(e1, highlight = 10)
p3

# Obtain the suggested solution from extraction result
obj_suggested <- bp_get_sig_obj(e1, e1$suggested)
obj_suggested
# If you think the suggested signature number is not right
# Just pick up the solution you want
obj_s8 <- bp_get_sig_obj(e1, 8)

# Track the reconstructed profile similarity
rec_sim <- get_sig_rec_similarity(obj_s8, t(simulated_catalogs$set1))
rec_sim

# After extraction, you can assign the signatures
# to reference COSMIC signatures
# More see ?get_sig_similarity
sim <- get_sig_similarity(obj_suggested)
# Visualize the match result
if (require(pheatmap)) {
  pheatmap::pheatmap(sim$similarity)
}

# You already got the activities of signatures
# in obj_suggested, however, you can still
# try to optimize the result.
# NOTE: the optimization step may not truly optimize the result!
expo <- bp_attribute_activity(e1, return_class = "data.table")
expo$abs_activity


## Not run: 
# Iterative extraction:
# This procedure will rerun extraction step
# for those samples with reconstructed catalog similarity
# lower than a threshold (default is 0.95)
e2 <- bp_extract_signatures_iter(
  t(simulated_catalogs$set1),
  range = 9:11,
  n_bootstrap = 5,
  n_nmf_run = 5,
  sim_threshold = 0.99
)
e2
# When the procedure run multiple rounds
# you can cluster the signatures from different rounds by
# the following command
# bp_cluster_iter_list(e2)

## Extra utilities
rank_score <- bp_get_rank_score(e1)
rank_score
stats <- bp_get_stats(e2$iter1)
# Get the mean reconstructed similarity
1 - stats$stats_sample$cosine_distance_mean

## End(Not run)

Location of Centromeres at Genome Build hg19

Description

Location of Centromeres at Genome Build hg19

Format

A data.frame

Source

Generate from UCSC gold path

Examples

data(centromeres.hg19)

Location of Centromeres at Genome Build hg38

Description

Location of Centromeres at Genome Build hg38

Format

A data.frame

Source

Generate from Genome Reference Consortium

Examples

data(centromeres.hg38)

Location of Centromeres at Genome Build mm10

Description

Location of Centromeres at Genome Build mm10

Format

A data.frame

Source

Generate from https://hgdownload.soe.ucsc.edu/goldenPath/mm10/database/gap.txt.gz

Examples

data(centromeres.mm10)

Location of Centromeres at Genome Build mm9

Description

Location of Centromeres at Genome Build mm9

Format

A data.frame

Source

Generate from https://hgdownload.soe.ucsc.edu/goldenPath/mm9/database/ with code:

for i in $(seq 1 19) X Y;
do
wget https://hgdownload.soe.ucsc.edu/goldenPath/mm9/database/chr${i}_gap.txt.gz
done

Examples

data(centromeres.mm9)

Location of Centromeres at Genome Build T2T

Description

Location of Centromeres at Genome Build T2T

Format

A data.frame

Source

from T2T study

Examples

data(centromeres.T2T)

Chromosome Size of Genome Build hg19

Description

Chromosome Size of Genome Build hg19

Format

A data.frame

Source

Generate from UCSC gold path

Examples

data(chromsize.hg19)

Chromosome Size of Genome Build hg38

Description

Chromosome Size of Genome Build hg38

Format

A data.frame

Source

Generate from UCSC gold path

Examples

data(chromsize.hg38)

Chromosome Size of Genome Build mm10

Description

Chromosome Size of Genome Build mm10

Format

A data.frame

Source

Generate from UCSC gold path http://hgdownload.cse.ucsc.edu/goldenPath/mm10/bigZips/mm10.chrom.sizes

Examples

data(chromsize.mm10)

Chromosome Size of Genome Build mm9

Description

Chromosome Size of Genome Build mm9

Format

A data.frame

Source

Generate from UCSC gold path http://hgdownload.cse.ucsc.edu/goldenPath/mm9/bigZips/mm9.chrom.sizes

Examples

data(chromsize.mm9)

Chromosome Size of Genome Build T2T

Description

Chromosome Size of Genome Build T2T

Format

A data.frame

Source

from T2T study

Examples

data(chromsize.T2T)

Classification Table of Copy Number Features Devised by Wang et al. for Method 'W'

Description

Classification Table of Copy Number Features Devised by Wang et al. for Method 'W'

Format

A data.table with "sigminer.features" class name

Source

Generate from code under data_raw/

Examples

data(CN.features)

Class CopyNumber

Description

S4 class for storing summarized absolute copy number profile.

Slots

data

data.table of absolute copy number calling.

summary.per.sample

data.table of copy number variation summary per sample.

genome_build

genome build version, should be one of 'hg19' or 'hg38'.

genome_measure

Set 'called' will use autosomo called segments size to compute total size for CNA burden calculation, this option is useful for WES and target sequencing. Set 'wg' will autosome size from genome build, this option is useful for WGS, SNP etc..

annotation

data.table of annotation for copy number segments.

dropoff.segs

data.table of copy number segments dropped from raw input.


Calculate Cosine Measures

Description

Calculate Cosine Measures

Usage

cosine(x, y)

Arguments

x

a numeric vector or matrix with column representing vector to calculate similarity.

y

must be same format as x.

Value

a numeric value or matrix.

Examples

x <- c(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
y <- c(0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0)
z1 <- cosine(x, y)
z1
z2 <- cosine(matrix(x), matrix(y))
z2

Location of Chromosome Cytobands at Genome Build hg19

Description

Location of Chromosome Cytobands at Genome Build hg19

Format

A data.frame

Source

from UCSC

Examples

data(cytobands.hg19)

Location of Chromosome Cytobands at Genome Build hg38

Description

Location of Chromosome Cytobands at Genome Build hg38

Format

A data.frame

Source

from UCSC

Examples

data(cytobands.hg38)

Location of Chromosome Cytobands at Genome Build mm10

Description

Location of Chromosome Cytobands at Genome Build mm10

Format

A data.frame

Source

from UCSC http://hgdownload.cse.ucsc.edu/goldenpath/mm10/database/cytoBand.txt.gz

Examples

data(cytobands.mm10)

Location of Chromosome Cytobands at Genome Build mm9

Description

Location of Chromosome Cytobands at Genome Build mm9

Format

A data.frame

Source

from UCSC http://hgdownload.cse.ucsc.edu/goldenpath/mm9/database/cytoBand.txt.gz

Examples

data(cytobands.mm9)

Location of Chromosome Cytobands at Genome Build T2T

Description

Location of Chromosome Cytobands at Genome Build T2T

Format

A data.frame

Source

from T2T study

Examples

data(cytobands.T2T)

Performs Strand Bias Enrichment Analysis for a Given Sample-by-Component Matrix

Description

See sig_tally for examples.

Usage

enrich_component_strand_bias(mat)

Arguments

mat

a sample-by-component matrix from sig_tally with strand bias labels "T:" and "B:".

Value

a data.table sorted by p_value.


Get Adjust P Values from Group Comparison

Description

Setting aes(label=..p.adj..) in ggpubr::compare_means() does not show adjust p values. The returned result of this function can be combined with ggpubr::stat_pvalue_manual() to fix this problem.

Usage

get_adj_p(
  data,
  .col,
  .grp = "Sample",
  comparisons = NULL,
  method = "wilcox.test",
  p.adjust.method = "fdr",
  p.digits = 3L,
  ...
)

Arguments

data

a data.frame containing column for groups and column for comparison.

.col

column name for comparison.

.grp

column name for groups.

comparisons

Default is NULL, use all combination in group column. It can be a list of length-2 vectors. The entries in the vector are either the names of 2 values on the x-axis or the 2 integers that correspond to the index of the groups of interest, to be compared.

method

a character string indicating which method to be used for comparing means. It can be 't.test', 'wilcox.test' etc..

p.adjust.method

correction method, default is 'fdr'. Run p.adjust.methods to see all available options.

p.digits

how many significant digits are to be used.

...

other arguments passed to ggpubr::compare_means()

Details

More info see ggpubr::compare_means(), ggpubr::stat_compare_means() and stats::p.adjust().

Value

a data.frame containing comparison result

Source

https://github.com/kassambara/ggpubr/issues/143

Examples

library(ggpubr)
# T-test
stat.test <- compare_means(
  len ~ dose,
  data = ToothGrowth,
  method = "t.test",
  p.adjust.method = "fdr"
)
stat.test
# Create a simple box plot
p <- ggboxplot(ToothGrowth, x = "dose", y = "len")
p

# Add p values
my_comparisons <- list(c("0.5", "1"), c("1", "2"), c("0.5", "2"))
p + stat_compare_means(method = "t.test", comparisons = my_comparisons)

# Try adding adjust p values
# proposed by author of ggpubr
# however it does not work
p + stat_compare_means(aes(label = ..p.adj..), method = "t.test", comparisons = my_comparisons)

# Solution:
# calculate adjust p values and their location
# then use stat_pvalue_manual() function
p_adj <- get_adj_p(ToothGrowth, .col = "len", .grp = "dose")
p_adj
p + stat_pvalue_manual(p_adj, label = "p.adj")

# Show selected comparisons
# Of note, p value is ajusted
# for three comparisons, but only
# two are showed in figure
p_adj <- get_adj_p(ToothGrowth,
  .col = "len", .grp = "dose",
  comparisons = list(c("0.5", "1"), c("1", "2"))
)
p + stat_pvalue_manual(p_adj, label = "p.adj")

Get Aneuploidy Score from Copy Number Profile

Description

This implements a Cohen-Sharir method (see reference) like "Aneuploidy Score" computation. You can read the source code to see how it works. Basically, it follows the logic of Cohen-Sharir method but with some difference in detail implementation. Their results should be counterpart, but with no data validation for now. Please raise an issue if you find problem/bugs in this function.

Usage

get_Aneuploidy_score(
  data,
  ploidy_df = NULL,
  genome_build = "hg19",
  rm_black_arms = FALSE
)

Arguments

data

a CopyNumber object or a data.frame containing at least 'chromosome', 'start', 'end', 'segVal', 'sample' these columns.

ploidy_df

default is NULL, compute ploidy by segment-size weighted copy number aross autosome, see get_cn_ploidy. You can also provide a data.frame with 'sample' and 'ploidy' columns.

genome_build

genome build version, should be 'hg19', 'hg38', 'mm9' or 'mm10'.

rm_black_arms

if TRUE, remove short arms of chr13/14/15/21/22 from calculation as documented in reference #3.

Value

A data.frame

References

  • Cohen-Sharir, Y., McFarland, J. M., Abdusamad, M., Marquis, C., Bernhard, S. V., Kazachkova, M., ... & Ben-David, U. (2021). Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition. Nature, 1-6.

  • Logic reference: https://github.com/quevedor2/aneuploidy_score/.

  • Taylor, Alison M., et al. "Genomic and functional approaches to understanding cancer aneuploidy." Cancer cell 33.4 (2018): 676-689.

Examples

# Load copy number object
load(system.file("extdata", "toy_copynumber.RData",
  package = "sigminer", mustWork = TRUE
))

df <- get_Aneuploidy_score(cn)
df

df2 <- get_Aneuploidy_score(cn@data)
df2

df3 <- get_Aneuploidy_score(cn@data,
  ploidy_df = get_cn_ploidy(cn@data)
)
df3

Get Specified Bayesian NMF Result from Run

Description

Sometimes, we may want to use or inspect specified run result from sig_auto_extract. This function is designed for this purpose.

Usage

get_bayesian_result(run_info)

Arguments

run_info

a data.frame with 1 row and two necessary columns Run and file.

Value

a list.

Author(s)

Shixiang Wang

Examples

load(system.file("extdata", "toy_copynumber_tally_W.RData",
  package = "sigminer", mustWork = TRUE
))

res <- sig_auto_extract(cn_tally_W$nmf_matrix, result_prefix = "Test_copynumber", nrun = 1)

# All run info are stored in res$Raw$summary_run
# Obtain result of run 1
res_run1 <- get_bayesian_result(res$Raw$summary_run[1, ])

Get CNV Frequency Table

Description

Get CNV Frequency Table

Usage

get_cn_freq_table(
  data,
  genome_build = "hg19",
  cutoff = 2L,
  resolution_factor = 1L
)

Arguments

data

a CopyNumber object or a data.frame containing at least 'chromosome', 'start', 'end', 'segVal', 'sample' these columns.

genome_build

genome build version, used when data is a data.frame, should be 'hg19' or 'hg38'.

cutoff

copy number value cutoff for splitting data into AMP and DEL. The values equal to cutoff are discarded. Default is 2, you can also set a length-2 vector, e.g. c(2, 2).

resolution_factor

an integer to control the resolution. When it is 1 (default), compute frequency in each cytoband. When it is 2, use compute frequency in each half cytoband.

Value

a data.table.


Get Ploidy from Absolute Copy Number Profile

Description

Get Ploidy from Absolute Copy Number Profile

Usage

get_cn_ploidy(data)

Arguments

data

a CopyNumber object or a data.frame containing at least 'chromosome', 'start', 'end', 'segVal' these columns.

Value

a value or a data.table

Examples

# Load copy number object
load(system.file("extdata", "toy_copynumber.RData",
  package = "sigminer", mustWork = TRUE
))

df <- get_cn_ploidy(cn)
df

Get Genome Annotation

Description

Get Genome Annotation

Usage

get_genome_annotation(
  data_type = c("chr_size", "centro_loc", "cytobands", "transcript", "gene"),
  chrs = paste0("chr", c(1:22, "X", "Y")),
  genome_build = c("hg19", "hg38", "T2T", "mm10", "mm9", "ce11")
)

Arguments

data_type

'chr_size' for chromosome size, 'centro_loc' for location of centromeres, 'cytobands' for location of chromosome cytobands and 'transcript' for location of transcripts.

chrs

chromosomes start with 'chr'

genome_build

one of 'hg19', 'hg38'

Value

a data.frame containing annotation data

Examples

df1 <- get_genome_annotation()
df1

df2 <- get_genome_annotation(genome_build = "hg38")
df2

df3 <- get_genome_annotation(data_type = "centro_loc")
df3

df4 <- get_genome_annotation(data_type = "centro_loc", genome_build = "hg38")
df4

df5 <- get_genome_annotation(data_type = "cytobands")
df5

df6 <- get_genome_annotation(data_type = "cytobands", genome_build = "hg38")
df6

Get Comparison Result between Signature Groups

Description

Compare genotypes/phenotypes based on signature groups (samples are assigned to several groups). For categorical type, calculate fisher p value (using stats::fisher.test) and count table. In larger than 2 by 2 tables, compute p-values by Monte Carlo simulation. For continuous type, calculate anova p value (using stats::aov), summary table and Tukey Honest significant difference (using stats::TukeyHSD). The result of this function can be plotted by show_group_comparison().

Usage

get_group_comparison(
  data,
  col_group,
  cols_to_compare,
  type = "ca",
  NAs = NA,
  verbose = FALSE
)

Arguments

data

a data.frame containing signature groups and genotypes/phenotypes (including categorical and continuous type data) want to analyze. User need to construct this data.frame by him/herself.

col_group

column name of signature groups.

cols_to_compare

column names of genotypes/phenotypes want to summarize based on groups.

type

a characater vector with length same as cols_to_compare, 'ca' for categorical type and 'co' for continuous type.

NAs

default is NA, filter NAs for categorical columns. Otherwise a value (either length 1 or length same as cols_to_compare) fill NAs.

verbose

if TRUE, print extra information.

Value

a list contains data, summary, p value etc..

Author(s)

Shixiang Wang [email protected]

Examples

load(system.file("extdata", "toy_copynumber_signature_by_W.RData",
  package = "sigminer", mustWork = TRUE
))

# Assign samples to clusters
groups <- get_groups(sig, method = "k-means")

set.seed(1234)

groups$prob <- rnorm(10)
groups$new_group <- sample(c("1", "2", "3", "4", NA), size = nrow(groups), replace = TRUE)

# Compare groups (filter NAs for categorical coloumns)
groups.cmp <- get_group_comparison(groups[, -1],
  col_group = "group",
  cols_to_compare = c("prob", "new_group"),
  type = c("co", "ca"), verbose = TRUE
)

# Compare groups (Set NAs of categorical columns to 'Rest')
groups.cmp2 <- get_group_comparison(groups[, -1],
  col_group = "group",
  cols_to_compare = c("prob", "new_group"),
  type = c("co", "ca"), NAs = "Rest", verbose = TRUE
)

Get Sample Groups from Signature Decomposition Information

Description

One of key results from signature analysis is to cluster samples into different groups. This function takes Signature object as input and return the membership in each cluster.

Usage

get_groups(
  Signature,
  method = c("consensus", "k-means", "exposure", "samples"),
  n_cluster = NULL,
  match_consensus = TRUE
)

Arguments

Signature

a Signature object obtained either from sig_extract or sig_auto_extract. Now it can be used to relative exposure result in data.table format from sig_fit.

method

grouping method, more see details, could be one of the following:

  • 'consensus' - returns the cluster membership based on the hierarchical clustering of the consensus matrix, it can only be used for the result obtained by sig_extract() with multiple runs using NMF package.

  • 'k-means' - returns the clusters by k-means.

  • 'exposure' - assigns a sample into a group whose signature exposure is dominant.

  • 'samples' - returns the cluster membership based on the contribution of signature to each sample, it can only be used for the result obtained by sig_extract() using NMF package.

n_cluster

only used when the method is 'k-means'.

match_consensus

only used when the method is 'consensus'. If TRUE, the result will match order as shown in consensus map.

Details

Users may find there are bigger differences between using method 'samples' and 'exposure' but they use a similar idear to find dominant signature, here goes the reason:

Method 'samples' using data directly from NMF decomposition, this means the two matrix W (basis matrix or signature matrix) and H (coefficient matrix or exposure matrix) are the results of NMF. For method 'exposure', it uses the signature exposure loading matrix. In this situation, each signture represents a number of mutations (alterations) about implementation please see source code of sig_extract() function.

Value

a data.table object

See Also

NMF::predict(), show_groups.

Examples

# Load copy number prepare object
load(system.file("extdata", "toy_copynumber_tally_W.RData",
  package = "sigminer", mustWork = TRUE
))
# Extract copy number signatures
library(NMF)
sig <- sig_extract(cn_tally_W$nmf_matrix, 2,
  nrun = 10
)

# Methods 'consensus' and 'samples' are from NMF::predict()
g1 <- get_groups(sig, method = "consensus", match_consensus = TRUE)
g1
g2 <- get_groups(sig, method = "samples")
g2

# Use k-means clustering
g3 <- get_groups(sig, method = "k-means")
g3

Get Overlap Size between Interval x and y

Description

Get Overlap Size between Interval x and y

Usage

get_intersect_size(x.start, x.end, y.start, y.end)

Arguments

x.start

start position of interval x.

x.end

start position of interval x.

y.start

start position of interval x.

y.end

start position of interval x.

Value

a numeric vector.

Examples

o1 <- get_intersect_size(1, 5, 3, 20)
o1
o2 <- get_intersect_size(3, 20, 1, 10)
o2
o3 <- get_intersect_size(c(1, 2, 1), c(10, 4, 6), c(4, 2, 5), c(10, 3, 22))
o3

Get proportions of pLOH score from Allele Specific Copy Number Profile

Description

pLOH score represents the genome that displayed LOH.

Usage

get_pLOH_score(data, rm_chrs = c("chrX", "chrY"), genome_build = "hg19")

Arguments

data

a CopyNumber object or a data.frame containing at least 'chromosome', 'start', 'end', 'segVal', "minor_cn", 'sample' these columns.

rm_chrs

chromosomes to be removed in calculation. Default is sex chromosomes (recommended).

genome_build

genome build version, should be 'hg19', 'hg38', 'mm9' or 'mm10'.

Value

A data.frame

References

Steele, Christopher D., et al. "Signatures of copy number alterations in human cancer." bioRxiv (2021).

Examples

# Load toy dataset of absolute copynumber profile
load(system.file("extdata", "toy_segTab.RData",
  package = "sigminer", mustWork = TRUE
))

set.seed(1234)
segTabs$minor_cn <- sample(c(0, 1), size = nrow(segTabs), replace = TRUE)
cn <- read_copynumber(segTabs,
  seg_cols = c("chromosome", "start", "end", "segVal"),
  genome_measure = "wg", complement = TRUE, add_loh = TRUE
)

df <- get_pLOH_score(cn)
df

df2 <- get_pLOH_score(cn@data)
df2

Get Shannon Diversity Index for Signatures

Description

H=i=1npiln(pi)H = - \sum_{i=1}^n{p_i ln(p_i)}

where n is the number of signatures identified in the signature with exposure > cutoff, and pi is the normalized exposure of the ith signature with exposure > cutoff. Exposures of signatures were normalized to sum to 1.

Usage

get_shannon_diversity_index(rel_expo, cutoff = 0.001)

Arguments

rel_expo

a data.frame with numeric columns indicating relative signature exposures for each sample. Typically this data can be obtained from get_sig_exposure().

cutoff

a relative exposure cutoff for filtering signatures, default is ⁠0.1%⁠.

Value

a data.frame

References

Steele, Christopher D., et al. "Undifferentiated sarcomas develop through distinct evolutionary pathways." Cancer Cell 35.3 (2019): 441-456.

Examples

# Load mutational signature
load(system.file("extdata", "toy_mutational_signature.RData",
  package = "sigminer", mustWork = TRUE
))
# Get signature exposure
rel_expo <- get_sig_exposure(sig2, type = "relative")
rel_expo
diversity_index <- get_shannon_diversity_index(rel_expo)
diversity_index

Obtain Signature Index for Cancer Types

Description

Obtain Signature Index for Cancer Types

Usage

get_sig_cancer_type_index(
  sig_type = c("legacy", "SBS", "DBS", "ID"),
  seq_type = c("WGS", "WES"),
  source = c("PCAWG", "TCGA", "nonPCAWG"),
  keyword = NULL
)

Arguments

sig_type

signature type.

seq_type

sequencing type.

source

data source.

keyword

keyword to search in the signature index database.

Value

a list.

Examples

l1 <- get_sig_cancer_type_index()
l2 <- get_sig_cancer_type_index(sig_type = "SBS")
l3 <- get_sig_cancer_type_index(sig_type = "DBS", source = "PCAWG", seq_type = "WGS")
l4 <- get_sig_cancer_type_index(sig_type = "ID")
l5 <- get_sig_cancer_type_index(keyword = "breast")
l1
l2
l3
l4
l5

Get Curated Reference Signature Database

Description

Reference mutational signatures and their aetiologies, mainly obtained from COSMIC database (SigProfiler results) and cleaned before saving into sigminer package. You can obtain:

  • COSMIC legacy SBS signatures.

  • COSMIC v3 SBS signatures.

  • COSMIC v3 DBS signatures.

  • COSMIC v3 ID (indel) signatures.

  • SBS and RS (rearrangement) signatures from Nik lab 2020 Nature Cancer paper.

  • RS signatures from BRCA560 and USARC cohorts.

  • Copy number signatures from USARC cohort and TCGA.

  • Copy number signatures from Liu lab 2023. It supports both PCAWG and TCGA cohort.

Usage

get_sig_db(sig_db = "legacy")

Arguments

sig_db

default 'legacy', it can be 'legacy' (for COSMIC v2 'SBS'), 'SBS', 'DBS', 'ID' and 'TSB' (for COSMIV v3.1 signatures) for small scale mutations. For more specific details, it can also be 'SBS_hg19', 'SBS_hg38', 'SBS_mm9', 'SBS_mm10', 'DBS_hg19', 'DBS_hg38', 'DBS_mm9', 'DBS_mm10' to use COSMIC v3 reference signatures from Alexandrov, Ludmil B., et al. (2020) (reference #1). In addition, it can be one of "SBS_Nik_lab_Organ", "RS_Nik_lab_Organ", "SBS_Nik_lab", "RS_Nik_lab" to refer reference signatures from Degasperi, Andrea, et al. (2020) (reference #2); "RS_BRCA560", "RS_USARC" to reference signatures from BRCA560 and USARC cohorts; "CNS_USARC" (40 categories), "CNS_TCGA" (48 categories) to reference copy number signatures from USARC cohort and TCGA; "CNS_TCGA176" (176 categories) and "CNS_PCAWG176" (176 categories) to reference copy number signatures from PCAWG and TCGA separately. UPDATE, the latest version of reference version can be automatically downloaded and loaded from https://cancer.sanger.ac.uk/signatures/downloads/ when a option with latest_ prefix is specified (e.g. "latest_SBS_GRCh37"). Note: the signature profile for different genome builds are basically same. And specific database (e.g. 'SBS_mm10') contains less signatures than all COSMIC signatures (because some signatures are not detected from Alexandrov, Ludmil B., et al. (2020)). For all available options, check the parameter setting.

Value

a list.

References

  • Steele, Christopher D., et al. "Signatures of copy number alterations in human cancer." Nature 606.7916 (2022): 984-991.

  • Alexandrov, Ludmil B., et al. "The repertoire of mutational signatures in human cancer." Nature 578.7793 (2020): 94-101.

  • Steele, Christopher D., et al. "Undifferentiated sarcomas develop through distinct evolutionary pathways." Cancer Cell 35.3 (2019): 441-456.

  • Ziyu Tao, et al. "The repertoire of copy number alteration signatures in human cancer." Briefings in Bioinformatics (2023): bbad053.

See Also

get_sig_similarity, sig_fit and show_cosmic_sig_profile.

Examples

s1 <- get_sig_db()
s2 <- get_sig_db("SBS")
s3 <- get_sig_db("DBS")
s4 <- get_sig_db("DBS_mm10")
s5 <- get_sig_db("SBS_Nik_lab")
s6 <- get_sig_db("ID")
s7 <- get_sig_db("RS_BRCA560")
s8 <- get_sig_db("RS_USARC")
s9 <- get_sig_db("RS_Nik_lab")
s10 <- get_sig_db("CNS_USARC")
s11 <- get_sig_db("CNS_TCGA")
s12 <- get_sig_db("CNS_TCGA176")
s13 <- get_sig_db("CNS_PCAWG176")
s1
s2
s3
s4
s5
s6
s7
s8
s9
s10
s11
s12
s13

Get Signature Exposure from 'Signature' Object

Description

The expected number of mutations (or copy number segment records) with each signature was determined after a scaling transformation V ~ WH = W'H' where W' = WU' and H' = UH. The scaling matrix U is a KxK diagnal matrix (K is signature number, U' is the inverse of U) with the element corresponding to the L1-norm of column vectors of W (ie. the sum of the elements of the vector). As a result, the k-th row vector of the final matrix H' represents the absolute exposure (activity) of the k-th process across samples (e.g., for SBS, the estimated (or expected) number of mutations generated by the k-th process). Of note, for copy number signatures, only components of feature CN was used for calculating H'.

Usage

get_sig_exposure(
  Signature,
  type = c("absolute", "relative"),
  rel_threshold = 0.01
)

Arguments

Signature

a Signature object obtained either from sig_extract or sig_auto_extract, or just a raw exposure matrix with column representing samples (patients) and row representing signatures.

type

'absolute' for signature exposure and 'relative' for signature relative exposure.

rel_threshold

only used when type is 'relative', relative exposure less than (<=) this value will be set to 0 and thus all signature exposures may not sum to 1. This is similar to this argument in sig_fit.

Value

a data.table

Author(s)

Shixiang Wang [email protected]

References

Kim, Jaegil, et al. "Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors." Nature genetics 48.6 (2016): 600.

Examples

# Load mutational signature
load(system.file("extdata", "toy_mutational_signature.RData",
  package = "sigminer", mustWork = TRUE
))
# Get signature exposure
expo1 <- get_sig_exposure(sig2)
expo1
expo2 <- get_sig_exposure(sig2, type = "relative")
expo2

Calculate Association between Signature Exposures and Other Features

Description

Association of signature exposures with other features will be performed using one of two procedures: for a continuous association variable (including ordinal variable), correaltion is performed; for a binary association variable, samples will be divided into two groups and Mann-Whitney U-test is performed to test for differences in signature exposure medians between the two groups. See get_tidy_association for cleaning association result.

Usage

get_sig_feature_association(
  data,
  cols_to_sigs,
  cols_to_features,
  type = "ca",
  method_co = c("spearman", "pearson", "kendall"),
  method_ca = stats::wilcox.test,
  min_n = 0.01,
  verbose = FALSE,
  ...
)

Arguments

data

a data.frame contains signature exposures and other features

cols_to_sigs

colnames for signature exposure

cols_to_features

colnames for other features

type

a character vector containing 'ca' for categorical variable and 'co' for continuous variable, it must have the same length as cols_to_features.

method_co

method for continuous variable, default is "spearman", could also be "pearson" and "kendall".

method_ca

method for categorical variable, default is "wilcox.test"

min_n

a minimal fraction (e.g. 0.01) or a integer number (e.g. 10) for filtering some variables with few positive events. Default is 0.01.

verbose

if TRUE, print extra message.

...

other arguments passing to test functions, like cor.test.

Value

a list. For 'co' features, 'measure' means correlation coefficient. For 'ca' features, 'measure' means difference in means of signature exposure.

See Also

get_tidy_association


Get Reconstructed Profile Cosine Similarity, RSS, etc.

Description

See bp_extract_signatures for examples.

Usage

get_sig_rec_similarity(Signature, nmf_matrix)

Arguments

Signature

a Signature object.

nmf_matrix

a matrix used for NMF decomposition with rows indicate samples and columns indicate components.

Value

a data.table.


Calculate Similarity between Identified Signatures and Reference Signatures

Description

The reference signatures can be either a Signature object specified by Ref argument or known COSMIC signatures specified by sig_db argument. Two COSMIC databases are used for comparisons - "legacy" which includes 30 signaures, and "SBS" - which includes updated/refined 65 signatures. This function is modified from compareSignatures() in maftools package. NOTE: all reference signatures are generated from gold standard tool: SigProfiler.

Usage

get_sig_similarity(
  Signature,
  Ref = NULL,
  sig_db = c("SBS", "legacy", "DBS", "ID", "TSB", "SBS_Nik_lab", "RS_Nik_lab",
    "RS_BRCA560", "RS_USARC", "CNS_USARC", "CNS_TCGA", "CNS_TCGA176", "CNS_PCAWG176",
    "SBS_hg19", "SBS_hg38", "SBS_mm9", "SBS_mm10", "DBS_hg19", "DBS_hg38", "DBS_mm9",
    "DBS_mm10", "SBS_Nik_lab_Organ", "RS_Nik_lab_Organ", "latest_SBS_GRCh37",
    "latest_DBS_GRCh37", "latest_ID_GRCh37", "latest_SBS_GRCh38", "latest_DBS_GRCh38",
    "latest_SBS_mm9", "latest_DBS_mm9", "latest_SBS_mm10", "latest_DBS_mm10",
    "latest_SBS_rn6", "latest_DBS_rn6", "latest_CN_GRCh37", 
    
    "latest_RNA-SBS_GRCh37", "latest_SV_GRCh38"),
  db_type = c("", "human-exome", "human-genome"),
  method = "cosine",
  normalize = c("row", "feature"),
  feature_setting = sigminer::CN.features,
  set_order = TRUE,
  pattern_to_rm = NULL,
  verbose = TRUE
)

Arguments

Signature

a Signature object or a component-by-signature matrix/data.frame (sum of each column is 1) or a normalized component-by-sample matrix/data.frame (sum of each column is 1). More please see examples.

Ref

default is NULL, can be a same object as Signature.

sig_db

default 'legacy', it can be 'legacy' (for COSMIC v2 'SBS'), 'SBS', 'DBS', 'ID' and 'TSB' (for COSMIV v3.1 signatures) for small scale mutations. For more specific details, it can also be 'SBS_hg19', 'SBS_hg38', 'SBS_mm9', 'SBS_mm10', 'DBS_hg19', 'DBS_hg38', 'DBS_mm9', 'DBS_mm10' to use COSMIC v3 reference signatures from Alexandrov, Ludmil B., et al. (2020) (reference #1). In addition, it can be one of "SBS_Nik_lab_Organ", "RS_Nik_lab_Organ", "SBS_Nik_lab", "RS_Nik_lab" to refer reference signatures from Degasperi, Andrea, et al. (2020) (reference #2); "RS_BRCA560", "RS_USARC" to reference signatures from BRCA560 and USARC cohorts; "CNS_USARC" (40 categories), "CNS_TCGA" (48 categories) to reference copy number signatures from USARC cohort and TCGA; "CNS_TCGA176" (176 categories) and "CNS_PCAWG176" (176 categories) to reference copy number signatures from PCAWG and TCGA separately. UPDATE, the latest version of reference version can be automatically downloaded and loaded from https://cancer.sanger.ac.uk/signatures/downloads/ when a option with latest_ prefix is specified (e.g. "latest_SBS_GRCh37"). Note: the signature profile for different genome builds are basically same. And specific database (e.g. 'SBS_mm10') contains less signatures than all COSMIC signatures (because some signatures are not detected from Alexandrov, Ludmil B., et al. (2020)). For all available options, check the parameter setting.

db_type

only used when sig_db is enabled. "" for keeping default, "human-exome" for transforming to exome frequency of component, and "human-genome" for transforming to whole genome frequency of component. Currently only works for 'SBS'.

method

default is 'cosine' for cosine similarity.

normalize

one of "row" and "feature". "row" is typically used for common mutational signatures. "feature" is designed by me to use when input are copy number signatures.

feature_setting

a data.frame used for classification. Only used when method is "Wang" ("W"). Default is CN.features. Users can also set custom input with "feature", "min" and "max" columns available. Valid features can be printed by unique(CN.features$feature).

set_order

if TRUE, order the return similarity matrix.

pattern_to_rm

patterns for removing some features/components in similarity calculation. A vector of component name is also accepted. The remove operation will be done after normalization. Default is NULL.

verbose

if TRUE, print extra info.

Value

a list containing smilarities, aetiologies if available, best match and RSS.

Author(s)

Shixiang Wang [email protected]

References

Alexandrov, Ludmil B., et al. "The repertoire of mutational signatures in human cancer." Nature 578.7793 (2020): 94-101.

Degasperi, Andrea, et al. "A practical framework and online tool for mutational signature analyses show intertissue variation and driver dependencies." Nature cancer 1.2 (2020): 249-263.

Steele, Christopher D., et al. "Undifferentiated sarcomas develop through distinct evolutionary pathways." Cancer Cell 35.3 (2019): 441-456.

Nik-Zainal, Serena, et al. "Landscape of somatic mutations in 560 breast cancer whole-genome sequences." Nature 534.7605 (2016): 47-54.

Steele, Christopher D., et al. "Signatures of copy number alterations in human cancer." Nature 606.7916 (2022): 984-991.

Examples

# Load mutational signature
load(system.file("extdata", "toy_mutational_signature.RData",
  package = "sigminer", mustWork = TRUE
))

s1 <- get_sig_similarity(sig2, Ref = sig2)
s1

s2 <- get_sig_similarity(sig2)
s2
s3 <- get_sig_similarity(sig2, sig_db = "SBS")
s3

# Set order for result similarity matrix
s4 <- get_sig_similarity(sig2, sig_db = "SBS", set_order = TRUE)
s4

## Remove some components
## in similarity calculation
s5 <- get_sig_similarity(sig2,
  Ref = sig2,
  pattern_to_rm = c("T[T>G]C", "T[T>G]G", "T[T>G]T")
)
s5

## Same to DBS and ID signatures
x1 <- get_sig_db("DBS_hg19")
x2 <- get_sig_db("DBS_hg38")
s6 <- get_sig_similarity(x1$db, x2$db)
s6

Get Tidy Signature Association Results

Description

Get Tidy Signature Association Results

Usage

get_tidy_association(cor_res, p_adjust = FALSE, method = "fdr")

Arguments

cor_res

data returned by get_sig_feature_association()

p_adjust

logical, if TRUE, adjust p values by data type.

method

p value correction method, see stats::p.adjust for more detail.

Value

a data.frame

See Also

get_sig_feature_association


General Group Enrichment Analysis

Description

This function takes a data.frame as input, compares proportion of positive cases or mean measure in one subgroup and the remaining samples.

Usage

group_enrichment(
  df,
  grp_vars = NULL,
  enrich_vars = NULL,
  cross = TRUE,
  co_method = c("t.test", "wilcox.test"),
  ref_group = NA
)

Arguments

df

a data.frame.

grp_vars

character vector specifying group variables to split samples into subgroups (at least 2 subgroups, otherwise this variable will be skipped).

enrich_vars

character vector specifying measure variables to be compared. If variable is not numeric, only binary cases are accepted in the form of TRUE/FALSE or P/N (P for positive cases and N for negative cases). Of note, NA values set to negative cases.

cross

logical, default is TRUE, combine all situations provided by grp_vars and enrich_vars. For examples, c('A', 'B') and c('C', 'D') will construct 4 combinations(i.e. "AC", "AD", "BC" and "BD"). A variable can not be in both grp_vars and enrich_vars, such cases will be automatically drop. If FALSE, use pairwise combinations, see section "examples" for use cases.

co_method

test method for continuous variable, default is 't.test'.

ref_group

reference group set in grp_vars.

Value

a data.table with following columns:

  • grp_var: group variable name.

  • enrich_var: enrich variable (variable to be compared) name.

  • grp1: the first group name, should be a member in grp_var column.

  • grp2: the remaining samples, marked as 'Rest'.

  • grp1_size: sample size for grp1.

  • grp1_pos_measure: for binary variable, it stores the proportion of positive cases in grp1; for continuous variable, it stores mean value.

  • grp2_size: sample size for grp2.

  • grp2_pos_measure: same as grp1_pos_measure but for grp2.

  • measure_observed: for binary variable, it stores odds ratio; for continuous variable, it stores scaled mean ratio.

  • measure_tested: only for binary variable, it stores estimated odds ratio and its 95% CI from fisher.test().

  • p_value: for binary variable, it stores p value from fisher.test(); for continuous variable, it stores value from wilcox.test() or t.test().

  • type: one of "binary" and "continuous".

  • method: one of "fish.test", "wilcox.test" and "t.test".

See Also

show_group_enrichment

Examples

set.seed(1234)
df <- dplyr::tibble(
  g1 = factor(abs(round(rnorm(99, 0, 1)))),
  g2 = rep(LETTERS[1:4], c(50, 40, 8, 1)),
  e1 = sample(c("P", "N"), 99, replace = TRUE),
  e2 = rnorm(99)
)

print(str(df))
print(head(df))

# Compare g1:e1, g1:e2, g2:e1 and g2:e2
x1 <- group_enrichment(df, grp_vars = c("g1", "g2"), enrich_vars = c("e1", "e2"))
x1

# Only compare g1:e1, g2:e2
x2 <- group_enrichment(df,
  grp_vars = c("g1", "g2"),
  enrich_vars = c("e1", "e2"),
  co_method = "wilcox.test",
  cross = FALSE
)
x2


# Visualization
p1 <- show_group_enrichment(x1, fill_by_p_value = TRUE)
p1
p2 <- show_group_enrichment(x1, fill_by_p_value = FALSE)
p2
p3 <- show_group_enrichment(x1, return_list = TRUE)
p3

Group Enrichment Analysis with Subsets

Description

More details see group_enrichment().

Usage

group_enrichment2(
  df,
  subset_var,
  grp_vars,
  enrich_vars,
  co_method = c("t.test", "wilcox.test"),
  ref_group = NA
)

Arguments

df

a data.frame.

subset_var

a column for subsetting.

grp_vars

character vector specifying group variables to split samples into subgroups (at least 2 subgroups, otherwise this variable will be skipped).

enrich_vars

character vector specifying measure variables to be compared. If variable is not numeric, only binary cases are accepted in the form of TRUE/FALSE or P/N (P for positive cases and N for negative cases). Of note, NA values set to negative cases.

co_method

test method for continuous variable, default is 't.test'.

ref_group

reference group set in grp_vars.

See Also

show_group_enrichment


Handle Hypermutant Samples

Description

This can be used for SNV/INDEL count matrix. For copy number analysis, please skip it.

Usage

handle_hyper_mutation(nmf_matrix)

Arguments

nmf_matrix

a matrix used for NMF decomposition with rows indicate samples and columns indicate components.

Value

a matrix.

References

Kim, Jaegil, et al. "Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors." Nature genetics 48.6 (2016): 600.


Say Hello to Users

Description

Say Hello to Users

Usage

hello()

Examples

hello()

Class MAF

Description

S4 class for storing summarized MAF. It is from maftools package.

Details

More about MAF object please see maftools.

Slots

data

data.table of MAF file containing all non-synonymous variants.

variants.per.sample

table containing variants per sample

variant.type.summary

table containing variant types per sample

variant.classification.summary

table containing variant classification per sample

gene.summary

table containing variant classification per gene

summary

table with basic MAF summary stats

maf.silent

subset of main MAF containing only silent variants

clinical.data

clinical data associated with each sample/Tumor_Sample_Barcode in MAF.


Output Signature Bootstrap Fitting Results

Description

Output Signature Bootstrap Fitting Results

Usage

output_bootstrap(x, result_dir, mut_type = "SBS", sig_db = mut_type)

Arguments

x

result from sig_fit_bootstrap_batch.

result_dir

a result directory.

mut_type

one of 'SBS', 'DBS', 'ID' or 'CN'.

sig_db

default 'legacy', it can be 'legacy' (for COSMIC v2 'SBS'), 'SBS', 'DBS', 'ID' and 'TSB' (for COSMIV v3.1 signatures) for small scale mutations. For more specific details, it can also be 'SBS_hg19', 'SBS_hg38', 'SBS_mm9', 'SBS_mm10', 'DBS_hg19', 'DBS_hg38', 'DBS_mm9', 'DBS_mm10' to use COSMIC v3 reference signatures from Alexandrov, Ludmil B., et al. (2020) (reference #1). In addition, it can be one of "SBS_Nik_lab_Organ", "RS_Nik_lab_Organ", "SBS_Nik_lab", "RS_Nik_lab" to refer reference signatures from Degasperi, Andrea, et al. (2020) (reference #2); "RS_BRCA560", "RS_USARC" to reference signatures from BRCA560 and USARC cohorts; "CNS_USARC" (40 categories), "CNS_TCGA" (48 categories) to reference copy number signatures from USARC cohort and TCGA; "CNS_TCGA176" (176 categories) and "CNS_PCAWG176" (176 categories) to reference copy number signatures from PCAWG and TCGA separately. UPDATE, the latest version of reference version can be automatically downloaded and loaded from https://cancer.sanger.ac.uk/signatures/downloads/ when a option with latest_ prefix is specified (e.g. "latest_SBS_GRCh37"). Note: the signature profile for different genome builds are basically same. And specific database (e.g. 'SBS_mm10') contains less signatures than all COSMIC signatures (because some signatures are not detected from Alexandrov, Ludmil B., et al. (2020)). For all available options, check the parameter setting.

Value

Nothing.


Output Signature Fitting Results

Description

Output Signature Fitting Results

Usage

output_fit(x, result_dir, mut_type = "SBS", sig_db = mut_type)

Arguments

x

result from sig_fit.

result_dir

a result directory.

mut_type

one of 'SBS', 'DBS', 'ID' or 'CN'.

sig_db

default 'legacy', it can be 'legacy' (for COSMIC v2 'SBS'), 'SBS', 'DBS', 'ID' and 'TSB' (for COSMIV v3.1 signatures) for small scale mutations. For more specific details, it can also be 'SBS_hg19', 'SBS_hg38', 'SBS_mm9', 'SBS_mm10', 'DBS_hg19', 'DBS_hg38', 'DBS_mm9', 'DBS_mm10' to use COSMIC v3 reference signatures from Alexandrov, Ludmil B., et al. (2020) (reference #1). In addition, it can be one of "SBS_Nik_lab_Organ", "RS_Nik_lab_Organ", "SBS_Nik_lab", "RS_Nik_lab" to refer reference signatures from Degasperi, Andrea, et al. (2020) (reference #2); "RS_BRCA560", "RS_USARC" to reference signatures from BRCA560 and USARC cohorts; "CNS_USARC" (40 categories), "CNS_TCGA" (48 categories) to reference copy number signatures from USARC cohort and TCGA; "CNS_TCGA176" (176 categories) and "CNS_PCAWG176" (176 categories) to reference copy number signatures from PCAWG and TCGA separately. UPDATE, the latest version of reference version can be automatically downloaded and loaded from https://cancer.sanger.ac.uk/signatures/downloads/ when a option with latest_ prefix is specified (e.g. "latest_SBS_GRCh37"). Note: the signature profile for different genome builds are basically same. And specific database (e.g. 'SBS_mm10') contains less signatures than all COSMIC signatures (because some signatures are not detected from Alexandrov, Ludmil B., et al. (2020)). For all available options, check the parameter setting.

Value

Nothing.


Output Signature Results

Description

Output Signature Results

Usage

output_sig(sig, result_dir, mut_type = "SBS", sig_db = mut_type)

Arguments

sig

a Signature object.

result_dir

a result directory.

mut_type

one of 'SBS', 'DBS', 'ID' or 'CN'.

sig_db

default 'legacy', it can be 'legacy' (for COSMIC v2 'SBS'), 'SBS', 'DBS', 'ID' and 'TSB' (for COSMIV v3.1 signatures) for small scale mutations. For more specific details, it can also be 'SBS_hg19', 'SBS_hg38', 'SBS_mm9', 'SBS_mm10', 'DBS_hg19', 'DBS_hg38', 'DBS_mm9', 'DBS_mm10' to use COSMIC v3 reference signatures from Alexandrov, Ludmil B., et al. (2020) (reference #1). In addition, it can be one of "SBS_Nik_lab_Organ", "RS_Nik_lab_Organ", "SBS_Nik_lab", "RS_Nik_lab" to refer reference signatures from Degasperi, Andrea, et al. (2020) (reference #2); "RS_BRCA560", "RS_USARC" to reference signatures from BRCA560 and USARC cohorts; "CNS_USARC" (40 categories), "CNS_TCGA" (48 categories) to reference copy number signatures from USARC cohort and TCGA; "CNS_TCGA176" (176 categories) and "CNS_PCAWG176" (176 categories) to reference copy number signatures from PCAWG and TCGA separately. UPDATE, the latest version of reference version can be automatically downloaded and loaded from https://cancer.sanger.ac.uk/signatures/downloads/ when a option with latest_ prefix is specified (e.g. "latest_SBS_GRCh37"). Note: the signature profile for different genome builds are basically same. And specific database (e.g. 'SBS_mm10') contains less signatures than all COSMIC signatures (because some signatures are not detected from Alexandrov, Ludmil B., et al. (2020)). For all available options, check the parameter setting.

Value

Nothing.


Output Tally Result in Barplots

Description

Output Tally Result in Barplots

Usage

output_tally(x, result_dir, mut_type = "SBS")

Arguments

x

a matrix with row representing components (motifs) and column representing samples.

result_dir

a result directory.

mut_type

one of 'SBS', 'DBS', 'ID' or 'CN'.

Value

Nothing.


Read Absolute Copy Number Profile

Description

Read absolute copy number profile for preparing CNV signature analysis. See detail part of sig_tally() to see how to handle sex to get correct summary.

Usage

read_copynumber(
  input,
  pattern = NULL,
  ignore_case = FALSE,
  seg_cols = c("Chromosome", "Start.bp", "End.bp", "modal_cn"),
  samp_col = "sample",
  add_loh = FALSE,
  loh_min_len = 10000,
  loh_min_frac = 0.05,
  join_adj_seg = TRUE,
  skip_annotation = FALSE,
  use_all = add_loh,
  min_segnum = 0L,
  max_copynumber = 20L,
  genome_build = c("hg19", "hg38", "T2T", "mm10", "mm9", "ce11"),
  genome_measure = c("called", "wg"),
  complement = FALSE,
  ...
)

Arguments

input

a data.frame or a file or a directory contains copy number profile.

pattern

an optional regular expression used to select part of files if input is a directory, more detail please see list.files() function.

ignore_case

logical. Should pattern-matching be case-insensitive?

seg_cols

four strings used to specify chromosome, start position, end position and copy number value in input, respectively. Default use names from ABSOLUTE calling result.

samp_col

a character used to specify the sample column name. If input is a directory and cannot find samp_col, sample names will use file names (set this parameter to NULL is recommended in this case).

add_loh

if TRUE, add LOH labels to segments. NOTE a column 'minor_cn' must exist to indicate minor allele copy number value. Sex chromosome will not be labeled.

loh_min_len

The length cut-off for labeling a segment as 'LOH'. Default is ⁠10Kb⁠.

loh_min_frac

When join_adj_seg set to TRUE, only the length fraction of LOH region is larger than this value will be labeled as 'LOH'. Default is 30%.

join_adj_seg

if TRUE (default), join adjacent segments with same copy number value. This is helpful for precisely count the number of breakpoint. When set use_all=TRUE, the mean function will be applied to extra numeric columns and unique string columns will be pasted by comma for joined records.

skip_annotation

if TRUE, skip annotation step, it may affect some analysis and visualization functionality, but speed up reading data.

use_all

default is FALSE. If True, use all columns from raw input.

min_segnum

minimal number of copy number segments within a sample.

max_copynumber

bigger copy number within a sample will be reset to this value.

genome_build

genome build version, should be 'hg19', 'hg38', 'mm9' or 'mm10'.

genome_measure

default is 'called', can be 'wg' or 'called'. Set 'called' will use called segments size to compute total size for CNA burden calculation, this option is useful for WES and target sequencing. Set 'wg' will use autosome size from genome build, this option is useful for WGS, SNP etc..

complement

if TRUE, complement chromosome (except 'Y') does not show in input data with normal copy 2.

...

other parameters pass to data.table::fread()

Value

a CopyNumber object.

Author(s)

Shixiang Wang [email protected]

See Also

read_maf for reading mutation data to MAF object.

Examples

# Load toy dataset of absolute copynumber profile
load(system.file("extdata", "toy_segTab.RData",
  package = "sigminer", mustWork = TRUE
))


cn <- read_copynumber(segTabs,
  seg_cols = c("chromosome", "start", "end", "segVal"),
  genome_build = "hg19", complement = FALSE
)
cn
cn_subset <- subset(cn, sample == "TCGA-DF-A2KN-01A-11D-A17U-01")

# Add LOH
set.seed(1234)
segTabs$minor_cn <- sample(c(0, 1), size = nrow(segTabs), replace = TRUE)
cn <- read_copynumber(segTabs,
  seg_cols = c("chromosome", "start", "end", "segVal"),
  genome_measure = "wg", complement = TRUE, add_loh = TRUE
)
# Use tally method "S" (Steele et al.)
tally_s <- sig_tally(cn, method = "S")

tab_file <- system.file("extdata", "metastatic_tumor.segtab.txt",
  package = "sigminer", mustWork = TRUE
)
cn2 <- read_copynumber(tab_file)
cn2

Read Copy Number Data from ASCAT Result Files

Description

Note, the result is not a CopyNumber object, you need to generate it by yourself.

Usage

read_copynumber_ascat(x)

Arguments

x

one or more .rds format files which contains ASCAT object from result of ascat.runAscat() in ASCAT package.

Value

a tidy list.


Read Absolute Copy Number Profile from Sequenza Result Directory

Description

Read Absolute Copy Number Profile from Sequenza Result Directory

Usage

read_copynumber_seqz(target_dir, return_df = FALSE, ...)

Arguments

target_dir

a directory path.

return_df

if TRUE, return a data.frame directly, otherwise return a CopyNumber object.

...

other parameters passing to read_copynumber().

Value

a data.frame or a CopyNumber object.


Read MAF Files

Description

This function is a wrapper of maftools::read.maf. Useless options in maftools::read.maf are dropped here. You can also use maftools::read.maf to read the data. All reference alleles and mutation alleles should be recorded in positive strand format.

Usage

read_maf(maf, verbose = TRUE)

read_maf_minimal(dt)

Arguments

maf

tab delimited MAF file. File can also be gz compressed. Required. Alternatively, you can also provide already read MAF file as a dataframe.

verbose

TRUE logical. Default to be talkative and prints summary.

dt

A data.frame contains at least the following columns: "Tumor_Sample_Barcode", "Chromosome", "Start_Position", "End_Position", "Reference_Allele", "Tumor_Seq_Allele2"

Functions

  • read_maf_minimal(): Read Maf data.frame from a minimal maf-like data

See Also

read_copynumber for reading copy number data to CopyNumber object.

Examples

laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools", mustWork = TRUE)
if (!require("R.utils")) {
  message("Please install 'R.utils' package firstly")
} else {
  laml <- read_maf(maf = laml.maf)
  laml

  laml_mini <- laml@data[, list(
    Tumor_Sample_Barcode, Chromosome,
    Start_Position, End_Position,
    Reference_Allele, Tumor_Seq_Allele2
  )]
  laml2 <- read_maf_minimal(laml_mini)
  laml2
}

Read Structural Variation Data as RS object

Description

Read Structural Variation Data as RS object

Usage

read_sv_as_rs(input)

Arguments

input

a data.frame or a file with the following columns: "sample", "chr1", "start1", "end1", "chr2", "start2", "end2", "strand1", "strand2", "svclass". NOTE: If column "svclass" already exists in input, "strand1" and "strand2" are optional. If "svclass" is not provided, read_sv_as_rs() will compute it by "strand1","strand2"(strand1/strand2),"chr1" and "chr2":

  • translocation, if mates are on different chromosomes.

  • inversion (+/-) and (-/+), if mates on the same chromosome.

  • deletion (+/+), if mates on the same chromosome.

  • tandem-duplication (-/-), if mates on the same chromosome.

Value

a list

Examples

sv <- readRDS(system.file("extdata", "toy_sv.rds", package = "sigminer", mustWork = TRUE))
rs <- read_sv_as_rs(sv)
# svclass is optional
rs2 <- read_sv_as_rs(sv[, setdiff(colnames(sv), "svclass")])
identical(rs, rs2)
## Not run: 
tally_rs <- sig_tally(rs)

## End(Not run)

Read VCF Files as MAF Object

Description

MAF file is more recommended. In this function, we will mimic the MAF object from the key c(1, 2, 4, 5, 7) columns of VCF file.

Usage

read_vcf(
  vcfs,
  samples = NULL,
  genome_build = c("hg19", "hg38", "T2T", "mm10", "mm9", "ce11"),
  keep_only_pass = FALSE,
  verbose = TRUE
)

Arguments

vcfs

VCF file paths.

samples

sample names for VCF files.

genome_build

genome build version like "hg19".

keep_only_pass

if TRUE, keep only 'PASS' mutation for analysis.

verbose

if TRUE, print extra info.

Value

a MAF.

See Also

read_maf, read_copynumber

Examples

vcfs <- list.files(system.file("extdata", package = "sigminer"), "*.vcf", full.names = TRUE)

maf <- read_vcf(vcfs)
maf <- read_vcf(vcfs, keep_only_pass = TRUE)

Read UCSC Xena Variant Format Data as MAF Object

Description

Read UCSC Xena Variant Format Data as MAF Object

Usage

read_xena_variants(path)

Arguments

path

a path to variant file.

Value

a MAF object.

Examples

if (requireNamespace("UCSCXenaTools")) {
  library(UCSCXenaTools)
  options(use_hiplot = TRUE)
  example_file <- XenaGenerate(subset = XenaDatasets == "mc3/ACC_mc3.txt") %>%
    XenaQuery() %>%
    XenaDownload()
  x <- read_xena_variants(example_file$destfiles)
  x@data
  y <- sig_tally(x)
  y
}

Report P Values from bootstrap Results

Description

See examples in sig_fit_bootstrap.

Usage

report_bootstrap_p_value(x, thresholds = c(0.01, 0.05, 0.1))

Arguments

x

a (list of) result from sig_fit_bootstrap.

thresholds

a vector of relative exposure threshold for calculating p values.

Value

a (list of) matrix


Same Size Clustering

Description

This is a wrapper for several implementation that classify samples into same size clusters, the details please see this blog. The source code is modified based on code from the blog.

Usage

same_size_clustering(
  mat,
  diss = FALSE,
  clsize = NULL,
  algo = c("nnit", "hcbottom", "kmvar"),
  method = c("maxd", "random", "mind", "elki", "ward.D", "average", "complete", "single")
)

Arguments

mat

a data/distance matrix.

diss

if TRUE, treat mat as a distance matrix.

clsize

integer, number of sample within a cluster.

algo

algorithm.

method

method.

Value

a vector.

Examples

set.seed(1234L)
x <- rbind(
  matrix(rnorm(100, sd = 0.3), ncol = 2),
  matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2)
)
colnames(x) <- c("x", "y")

y1 <- same_size_clustering(x, clsize = 10)
y11 <- same_size_clustering(as.matrix(dist(x)), clsize = 10, diss = TRUE)

y2 <- same_size_clustering(x, clsize = 10, algo = "hcbottom", method = "ward.D")

y3 <- same_size_clustering(x, clsize = 10, algo = "kmvar")
y33 <- same_size_clustering(as.matrix(dist(x)), clsize = 10, algo = "kmvar", diss = TRUE)

Score Copy Number Profile

Description

Returns quantification of copy number profile and events including tandem duplication and Chromothripisis etc. Only copy number data from autosome is used here. Some of the quantification methods are rough, you use at your risk. You should do some extra work to check the result scores.

Usage

scoring(object, TD_size_cutoff = c(1000, 1e+05, 2e+06), TD_cn_cutoff = Inf)

Arguments

object

a object of CopyNumber.

TD_size_cutoff

a length-3 numeric vector used to specify the start, midpoint, end segment size for determining tandem duplication size range, midpoint is used to split TD into short TD and long TD. Default is 1Kb to 100Kb for short TD, 100Kb to 2Mb for long TD.

TD_cn_cutoff

a number defining the maximum copy number of TD, default is Inf, i.e. no cutoff.

Value

a data.table with following scores:

  • cnaBurden: CNA burden representing the altered genomic fraction as previously reported.

  • cnaLoad: CNA load representing the quantity of copy number alteration.

  • MACN: mean altered copy number (MACN) reflecting the property of altered copy number segments, calculated as

    MACN=iCNiNcnvMACN = \frac{\sum_{i} CN_i}{N_{cnv}}

    where CNiCN_i is the copy number of altered segment ii, NcnvN_{cnv} is the number of CNV.

  • weightedMACN: same as MACN but weighted with segment length.

    MACNweighted=i(CNi×Li)iLiMACN_{weighted} = \frac{\sum_{i} (CN_i \times L_{i})}{ \sum_{i} L_{i} }

    where LiL_{i} is the length of altered copy number segment ii.

  • Ploidy: ploidy, the formula is same as weightedMACN but using all copy number segments instead of altered copy number segments.

  • TDP_pnas: tandem duplication phenotype score from ⁠https://www.pnas.org/doi/10.1073/pnas.1520010113⁠, the threshold k in reference is omitted.

    TDP=chrTDobsTDexpTDtotalTDP = - \frac{\sum_{chr} |TD_{obs}-TD_{exp}|}{TD_{total}}

    where TDtotalTD_{total} is the number of TD, TDobsTD_{obs} and TDexpTD_exp are observed number of TD and expected number of TD for each chromosome.

  • TDP: tandem duplication score used defined by our group work, TD represents segment with copy number greater than 2.

    TD=TDtotalchrTDobsTDexp+1TD = \frac{TD_{total}}{\sum_{chr} |TD_{obs}-TD_{exp}|+1}

  • sTDP: TDP score for short TD.

  • lTDP: TDP score for long TD.

  • TDP_size : TDP region size (Mb).

  • sTDP_size: sTDP region size (Mb).

  • lTDP_size: lTDP region size(Mb).

  • Chromoth_state: chromothripsis state score, according to reference doi:10.1016/j.cell.2013.02.023, chromothripsis frequently leads to massive loss of segments on the affected chromosome with segmental losses being interspersed with regions displaying normal (disomic) copy-number (e.g., copy-number states oscillating between copy-number = 1 and copy-number = 2), form tens to hundreds of locally clustered DNA rearrangements. Most of methods use both SV and CNV to infer chromothripsis, here we roughly quantify it with

    chrNOsCN2\sum_{chr}{N_{OsCN}^2}

    where NOsCNN_{OsCN} is the number of oscillating copy number pattern "2-1-2" for each chromosome.

Examples

# Load copy number object
load(system.file("extdata", "toy_copynumber.RData",
  package = "sigminer", mustWork = TRUE
))

d <- scoring(cn)
d

d2 <- scoring(cn, TD_cn_cutoff = 4L)
d2

Show Alteration Catalogue Profile

Description

Show Alteration Catalogue Profile

Usage

show_catalogue(
  catalogue,
  mode = c("SBS", "copynumber", "DBS", "ID", "RS"),
  method = "Wang",
  normalize = c("raw", "row", "feature"),
  style = c("default", "cosmic"),
  samples = NULL,
  samples_name = NULL,
  x_lab = "Components",
  y_lab = "Counts",
  ...
)

Arguments

catalogue

result from sig_tally or a matrix with row representing components (motifs) and column representing samples

mode

signature type for plotting, now supports 'copynumber', 'SBS', 'DBS', 'ID' and 'RS' (genome rearrangement signature).

method

method for copy number feature classification in sig_tally, can be one of "Wang" ("W"), "S".

normalize

normalize method.

style

plot style, one of 'default' and 'cosmic'.

samples

default is NULL, show sum of all samples in one row. If not NULL, show specified samples.

samples_name

set the sample names shown in plot.

x_lab

x axis lab.

y_lab

y axis lab.

...

other arguments passing to show_sig_profile.

Value

a ggplot object

Examples

data("simulated_catalogs")
p <- show_catalogue(simulated_catalogs$set1, style = "cosmic")
p

Show Copy Number Profile in Circos

Description

Another visualization method for copy number profile like show_cn_profile.

Usage

show_cn_circos(
  data,
  samples = NULL,
  show_title = TRUE,
  chrs = paste0("chr", 1:22),
  genome_build = c("hg19", "hg38", "T2T", "mm10", "mm9", "ce11"),
  col = NULL,
  side = "inside",
  ...
)

Arguments

data

a CopyNumber object or a data.frame containing at least 'chromosome', 'start', 'end', 'segVal' these columns.

samples

default is NULL, can be a chracter vector representing multiple samples or number of samples to show. If data argument is a data.frame, a column called sample must exist.

show_title

if TRUE (default), show title with sample ID.

chrs

chromosomes start with 'chr'.

genome_build

genome build version, used when data is a data.frame, should be 'hg19' or 'hg38'.

col

colors for the heatmaps. If it is NULL, set to circlize::colorRamp2(c(1, 2, 4), c("blue", "black", "red")).

side

side of the heatmaps.

...

other parameters passing to circlize::circos.genomicHeatmap.

Value

a circos plot

Examples

load(system.file("extdata", "toy_copynumber.RData",
  package = "sigminer", mustWork = TRUE
))

show_cn_circos(cn, samples = 1)
show_cn_circos(cn, samples = "TCGA-99-7458-01A-11D-2035-01")

## Remove title
show_cn_circos(cn, samples = 1, show_title = FALSE)

## Subset chromosomes
show_cn_circos(cn, samples = 1, chrs = c("chr1", "chr2", "chr3"))

## Arrange plots
layout(matrix(1:4, 2, 2))
show_cn_circos(cn, samples = 4)

layout(1) # reset layout

Show Copy Number Components

Description

Show classified components ("Wang" ("W") method) for copy number data.

Usage

show_cn_components(
  parameters,
  method = "Wang",
  show_weights = TRUE,
  log_y = FALSE,
  return_plotlist = FALSE,
  base_size = 12,
  nrow = 2,
  align = "hv",
  ...
)

Arguments

parameters

a data.frame contain parameter components, obtain this from sig_tally function.

method

method for feature classification, can be one of "Wang" ("W"), "S" (for method described in Steele et al. 2019), "X" (for method described in Tao et al. 2023).

show_weights

default is TRUE, show weights for each component. Only used when method is "Macintyre".

log_y

logical, if TRUE, show log10 based y axis, only works for input from "Wang" ("W") method.

return_plotlist

if TRUE, return a list of ggplot objects but a combined plot.

base_size

overall font size.

nrow

(optional) Number of rows in the plot grid.

align

(optional) Specifies whether graphs in the grid should be horizontally ("h") or vertically ("v") aligned. Options are "none" (default), "hv" (align in both directions), "h", and "v".

...

other options pass to plot_grid function of cowplot package.

Value

a ggplot object

Author(s)

Shixiang Wang [email protected]


Show Copy Number Distribution either by Length or Chromosome

Description

Visually summarize copy number distribution either by copy number segment length or chromosome. Input is a CopyNumber object, genome_build option will read from genome_build slot of object.

Usage

show_cn_distribution(
  data,
  rm_normal = TRUE,
  mode = c("ld", "cd"),
  fill = FALSE,
  scale_chr = TRUE,
  base_size = 14
)

Arguments

data

a CopyNumber object.

rm_normal

logical. Whether remove normal copy (i.e. "segVal" equals 2), default is TRUE.

mode

either "ld" for distribution by CN length or "cd" for distribution by chromosome.

fill

when mode is "cd" and fill is TRUE, plot percentage instead of count.

scale_chr

logical. If TRUE, normalize count to per Megabase unit.

base_size

overall font size.

Value

a ggplot object

Author(s)

Shixiang Wang [email protected]

Examples

# Load copy number object
load(system.file("extdata", "toy_copynumber.RData",
  package = "sigminer", mustWork = TRUE
))
# Plot distribution
p1 <- show_cn_distribution(cn)
p1
p2 <- show_cn_distribution(cn, mode = "cd")
p2
p3 <- show_cn_distribution(cn, mode = "cd", fill = TRUE)
p3

Show Copy Number Feature Distributions

Description

Show Copy Number Feature Distributions

Usage

show_cn_features(
  features,
  method = "Wang",
  rm_outlier = FALSE,
  ylab = NULL,
  log_y = FALSE,
  return_plotlist = FALSE,
  base_size = 12,
  nrow = 2,
  align = "hv",
  ...
)

Arguments

features

a feature list generate from sig_tally function.

method

method for feature classification, can be one of "Wang" ("W"), "S" (for method described in Steele et al. 2019), "X" (for method described in Tao et al. 2023).

rm_outlier

default is FALSE, if TRUE, remove outliers. Only works when method is "Wang" ("W").

ylab

lab of y axis.

log_y

logical, if TRUE, show log10 based y axis, only works for input from "Wang" ("W") method.

return_plotlist

if TRUE, return a list of ggplot objects but a combined plot.

base_size

overall font size.

nrow

(optional) Number of rows in the plot grid.

align

(optional) Specifies whether graphs in the grid should be horizontally ("h") or vertically ("v") aligned. Options are "none" (default), "hv" (align in both directions), "h", and "v".

...

other options pass to plot_grid function of cowplot package.

Value

a ggplot object


Show Copy Number Variation Frequency Profile with Circos

Description

Show Copy Number Variation Frequency Profile with Circos

Usage

show_cn_freq_circos(
  data,
  groups = NULL,
  cutoff = 2L,
  resolution_factor = 1L,
  title = c("AMP", "DEL"),
  chrs = paste0("chr", 1:22),
  genome_build = c("hg19", "hg38", "T2T", "mm10", "mm9", "ce11"),
  cols = NULL,
  plot_ideogram = TRUE,
  track_height = 0.5,
  ideogram_height = 1,
  ...
)

Arguments

data

a CopyNumber object or a data.frame containing at least 'chromosome', 'start', 'end', 'segVal', 'sample' these columns.

groups

a named list or a column name for specifying groups.

cutoff

copy number value cutoff for splitting data into AMP and DEL. The values equal to cutoff are discarded. Default is 2, you can also set a length-2 vector, e.g. c(2, 2).

resolution_factor

an integer to control the resolution. When it is 1 (default), compute frequency in each cytoband. When it is 2, use compute frequency in each half cytoband.

title

length-2 titles for AMP and DEL.

chrs

chromosomes start with 'chr'.

genome_build

genome build version, used when data is a data.frame, should be 'hg19' or 'hg38'.

cols

length-2 colors for AMP and DEL.

plot_ideogram

default is TRUE, show ideogram.

track_height

track height in mm unit.

ideogram_height

ideogram height in mm unit.

...

other parameters passing to circlize::circos.genomicLines.

Value

Nothing.

Examples

load(system.file("extdata", "toy_copynumber.RData",
  package = "sigminer", mustWork = TRUE
))

show_cn_freq_circos(cn)
ss <- unique(cn@data$sample)
show_cn_freq_circos(cn, groups = list(a = ss[1:5], b = ss[6:10]), cols = c("red", "green"))

Show Summary Copy Number Profile for Sample Groups

Description

Show Summary Copy Number Profile for Sample Groups

Usage

show_cn_group_profile(
  data,
  groups = NULL,
  fill_area = TRUE,
  cols = NULL,
  chrs = paste0("chr", c(1:22, "X")),
  genome_build = c("hg19", "hg38", "T2T", "mm10", "mm9", "ce11"),
  cutoff = 2L,
  resolution_factor = 1L,
  force_y_limit = TRUE,
  highlight_genes = NULL,
  repel = FALSE,
  nrow = NULL,
  ncol = NULL,
  return_plotlist = FALSE
)

Arguments

data

a CopyNumber object or a data.frame containing at least 'chromosome', 'start', 'end', 'segVal', 'sample' these columns.

groups

a named list or a column name for specifying groups.

fill_area

default is TRUE, fill area with colors.

cols

length-2 colors for AMP and DEL.

chrs

chromosomes start with 'chr'.

genome_build

genome build version, used when data is a data.frame, should be 'hg19' or 'hg38'.

cutoff

copy number value cutoff for splitting data into AMP and DEL. The values equal to cutoff are discarded. Default is 2, you can also set a length-2 vector, e.g. c(2, 2).

resolution_factor

an integer to control the resolution. When it is 1 (default), compute frequency in each cytoband. When it is 2, use compute frequency in each half cytoband.

force_y_limit

default is TRUE, force multiple plots

highlight_genes

gene list to highlight. have same y ranges. You can also set a length-2 numeric value.

repel

if TRUE (default is FALSE), repel highlight genes to avoid overlap.

nrow

number of rows in the plot grid when multiple samples are selected.

ncol

number of columns in the plot grid when multiple samples are selected.

return_plotlist

default is FALSE, if TRUE, return a plot list instead of a combined plot.

Value

a (list of) ggplot object.

Examples

load(system.file("extdata", "toy_copynumber.RData",
  package = "sigminer", mustWork = TRUE
))

p1 <- show_cn_group_profile(cn)
p1

ss <- unique(cn@data$sample)
p2 <- show_cn_group_profile(cn, groups = list(a = ss[1:5], b = ss[6:10]))
p2
p3 <- show_cn_group_profile(cn,
  groups = list(g1 = ss[1:5], g2 = ss[6:10]),
  force_y_limit = c(-1, 1), nrow = 2
)
p3

## Set custom cutoff for custom data
data <- cn@data
data$segVal <- data$segVal - 2L
p4 <- show_cn_group_profile(data,
  groups = list(g1 = ss[1:5], g2 = ss[6:10]),
  force_y_limit = c(-1, 1), nrow = 2,
  cutoff = c(0, 0)
)
p4

## Add highlight gene
p5 <- show_cn_group_profile(cn, highlight_genes = c("TP53", "EGFR"))
p5

Show Sample Copy Number Profile

Description

Sometimes it is very useful to check details about copy number profile for one or multiple samples. This function is designed to do this job and can be further modified by ggplot2 related packages.

Usage

show_cn_profile(
  data,
  samples = NULL,
  show_n = NULL,
  show_title = FALSE,
  show_labels = NULL,
  chrs = paste0("chr", 1:22),
  position = NULL,
  genome_build = c("hg19", "hg38", "T2T", "mm10", "mm9", "ce11"),
  ylim = NULL,
  nrow = NULL,
  ncol = NULL,
  return_plotlist = FALSE
)

Arguments

data

a CopyNumber object or a data.frame containing at least 'chromosome', 'start', 'end', 'segVal' these columns.

samples

default is NULL, can be a chracter vector representing multiple samples. If data argument is a data.frame, a column called sample must exist.

show_n

number of samples to show, this is used for checking.

show_title

if TRUE, show title for multiple samples.

show_labels

one of NULL, "s" (for labelling short segments < 1e7) or "a" (all segments).

chrs

chromosomes start with 'chr'.

position

a position range, e.g. "chr1:3218923-116319008". Only data overlaps with this range will be shown.

genome_build

genome build version, used when data is a data.frame, should be 'hg19' or 'hg38'.

ylim

limites for y axis.

nrow

number of rows in the plot grid when multiple samples are selected.

ncol

number of columns in the plot grid when multiple samples are selected.

return_plotlist

default is FALSE, if TRUE, return a plot list instead of a combined plot.

Value

a ggplot object or a list

Examples

# Load copy number object
load(system.file("extdata", "toy_copynumber.RData",
  package = "sigminer", mustWork = TRUE
))

p <- show_cn_profile(cn, nrow = 2, ncol = 1)
p

p2 <- show_cn_profile(cn,
  nrow = 2, ncol = 1,
  position = "chr1:3218923-116319008"
)
p2

A Simple and General Way for Association Analysis

Description

All variables must be continuous. The matrix will be returned as an element of ggplot object. This is basically a wrapper of R package ggcorrplot.

Usage

show_cor(
  data,
  x_vars = colnames(data),
  y_vars = x_vars,
  cor_method = "spearman",
  vis_method = "square",
  lab = TRUE,
  test = TRUE,
  hc_order = FALSE,
  p_adj = NULL,
  ...
)

Arguments

data

a data.frame.

x_vars

variables/column names shown in x axis.

y_vars

variables/column names shown in y axis.

cor_method

method for correlation, default is 'spearman'.

vis_method

visualization method, default is 'square', can also be 'circle'.

lab

logical value. If TRUE, add correlation coefficient on the plot.

test

if TRUE, run test for correlation and mark significance.

hc_order

logical value. If TRUE, correlation matrix will be hc.ordered using hclust function.

p_adj

p adjust method, see stats::p.adjust for details.

...

other parameters passing to ggcorrplot::ggcorrplot().

Value

a ggplot object

See Also

show_sig_feature_corrplot for specific and more powerful association analysis and visualization.

Examples

data("mtcars")
p1 <- show_cor(mtcars)
p2 <- show_cor(mtcars,
  x_vars = colnames(mtcars)[1:4],
  y_vars = colnames(mtcars)[5:8]
)
p3 <- show_cor(mtcars, vis_method = "circle", p_adj = "fdr")
p1
p1$cor
p2
p3

## Auto detect problem variables
mtcars$xx <- 0L
p4 <- show_cor(mtcars)
p4

Show Signature Information in Web Browser

Description

Show Signature Information in Web Browser

Usage

show_cosmic(x = "home")

Arguments

x

a string indicating location ("home" for COSMIC signature home, "legacy" for COSMIC v2 signatures, "SBS" for COSMIC v3 SBS signatures, "DBS" for COSMIC v3 DBS signatures, "ID" for COSMIC v3 INDEL signatures) or signature index (e.g. "SBS1", "DBS2", "ID3").

Value

Nothing.

Examples

## Not run: 
show_cosmic()
show_cosmic("legacy")
show_cosmic("SBS")
show_cosmic("DBS")
show_cosmic("ID")
show_cosmic("SBS1")
show_cosmic("DBS2")
show_cosmic("ID3")

## End(Not run)

Plot Reference (Mainly COSMIC) Signature Profile

Description

Plot Reference (Mainly COSMIC) Signature Profile

Usage

show_cosmic_sig_profile(
  sig_index = NULL,
  show_index = TRUE,
  sig_db = "legacy",
  ...
)

Arguments

sig_index

a vector for signature index. "ALL" for all signatures.

show_index

if TRUE, show valid indices.

sig_db

default 'legacy', it can be 'legacy' (for COSMIC v2 'SBS'), 'SBS', 'DBS', 'ID' and 'TSB' (for COSMIV v3.1 signatures) for small scale mutations. For more specific details, it can also be 'SBS_hg19', 'SBS_hg38', 'SBS_mm9', 'SBS_mm10', 'DBS_hg19', 'DBS_hg38', 'DBS_mm9', 'DBS_mm10' to use COSMIC v3 reference signatures from Alexandrov, Ludmil B., et al. (2020) (reference #1). In addition, it can be one of "SBS_Nik_lab_Organ", "RS_Nik_lab_Organ", "SBS_Nik_lab", "RS_Nik_lab" to refer reference signatures from Degasperi, Andrea, et al. (2020) (reference #2); "RS_BRCA560", "RS_USARC" to reference signatures from BRCA560 and USARC cohorts; "CNS_USARC" (40 categories), "CNS_TCGA" (48 categories) to reference copy number signatures from USARC cohort and TCGA; "CNS_TCGA176" (176 categories) and "CNS_PCAWG176" (176 categories) to reference copy number signatures from PCAWG and TCGA separately. UPDATE, the latest version of reference version can be automatically downloaded and loaded from https://cancer.sanger.ac.uk/signatures/downloads/ when a option with latest_ prefix is specified (e.g. "latest_SBS_GRCh37"). Note: the signature profile for different genome builds are basically same. And specific database (e.g. 'SBS_mm10') contains less signatures than all COSMIC signatures (because some signatures are not detected from Alexandrov, Ludmil B., et al. (2020)). For all available options, check the parameter setting.

...

other arguments passing to show_sig_profile.

Value

a ggplot object

Author(s)

Shixiang Wang [email protected]

Examples

show_cosmic_sig_profile()
show_cosmic_sig_profile(sig_db = "SBS")
show_cosmic_sig_profile(sig_index = 1:5)
show_cosmic_sig_profile(sig_db = "SBS", sig_index = c("10a", "17a"))

gg <- show_cosmic_sig_profile(sig_index = 1:5)
gg$aetiology

Plot Group Comparison Result

Description

Using result data from get_group_comparison, this function plots genotypes/phenotypes comparison between signature groups using ggplot2 package and return a list of ggplot object contains individual and combined plots. The combined plot is easily saved to local using cowplot::save_plot(). Of note, default fisher test p values are shown for categorical data and fdr values are shown for continuous data.

Usage

show_group_comparison(
  group_comparison,
  xlab = "group",
  ylab_co = NA,
  legend_title_ca = NA,
  legend_position_ca = "bottom",
  set_ca_sig_yaxis = FALSE,
  set_ca_custom_xlab = FALSE,
  show_pvalue = TRUE,
  ca_p_threshold = 0.01,
  method = "wilcox.test",
  p.adjust.method = "fdr",
  base_size = 12,
  font_size_x = 12,
  text_angle_x = 30,
  text_hjust_x = 0.2,
  ...
)

Arguments

group_comparison

a list from result of get_group_comparison function.

xlab

lab name of x axis for all plots. if it is NA, remove title for x axis.

ylab_co

lab name of y axis for plots of continuous type data. Of note, this argument should be a character vector has same length as group_comparison, the location for categorical type data should mark with NA.

legend_title_ca

legend title for plots of categorical type data.

legend_position_ca

legend position for plots of categorical type data. Of note, this argument should be a character vector has same length as group_comparison, the location for continuous type data should mark with NA.

set_ca_sig_yaxis

if TRUE, use y axis to show signature proportion instead of variable proportion.

set_ca_custom_xlab

only works when set_ca_sig_yaxis is TRUE. If TRUE, set x labels using input xlab, otherwise variable names will be used.

show_pvalue

if TRUE, show p values.

ca_p_threshold

a p threshold for categorical variables, default is 0.01. A p value less than 0.01 will be shown as P < 0.01.

method

a character string indicating which method to be used for comparing means. It can be 't.test', 'wilcox.test' etc..

p.adjust.method

correction method, default is 'fdr'. Run p.adjust.methods to see all available options.

base_size

overall font size.

font_size_x

font size for x.

text_angle_x

text angle for x.

text_hjust_x

adjust x axis text

...

other paramters pass to ggpubr::compare_means() or ggpubr::stat_compare_means() according to the specified method.

Value

a list of ggplot objects.

Author(s)

Shixiang Wang [email protected]

Examples

load(system.file("extdata", "toy_copynumber_signature_by_W.RData",
  package = "sigminer", mustWork = TRUE
))

# Assign samples to clusters
groups <- get_groups(sig, method = "k-means")

set.seed(1234)

groups$prob <- rnorm(10)
groups$new_group <- sample(c("1", "2", "3", "4", NA), size = nrow(groups), replace = TRUE)

# Compare groups (filter NAs for categorical coloumns)
groups.cmp <- get_group_comparison(groups[, -1],
  col_group = "group",
  cols_to_compare = c("prob", "new_group"),
  type = c("co", "ca"), verbose = TRUE
)

# Compare groups (Set NAs of categorical columns to 'Rest')
groups.cmp2 <- get_group_comparison(groups[, -1],
  col_group = "group",
  cols_to_compare = c("prob", "new_group"),
  type = c("co", "ca"), NAs = "Rest", verbose = TRUE
)

show_group_comparison(groups.cmp)

ggcomp <- show_group_comparison(groups.cmp2)
ggcomp$co_comb
ggcomp$ca_comb

Show Groupped Variable Distribution

Description

This is a general function, it can be used in any proper analysis.

Usage

show_group_distribution(
  data,
  gvar,
  dvar,
  fun = stats::median,
  order_by_fun = FALSE,
  alpha = 0.8,
  g_label = "label",
  g_angle = 0,
  g_position = "top",
  point_size = 1L,
  segment_size = 1L,
  segment_color = "red",
  xlab = NULL,
  ylab = NULL,
  nrow = 1L,
  background_color = c("#DCDCDC", "#F5F5F5")
)

Arguments

data

a data.frame.

gvar

a group variable name/index.

dvar

a distribution variable name/index.

fun

a function to summarize, default is stats::median, can also be mean.

order_by_fun

if TRUE, reorder the groups by summary measure computed by argument fun.

alpha

alpha for points, range from 0 to 1.

g_label

a string 'label' (default) for labeling with sample size, or 'norm' to show just group name, or a named vector to set facet labels.

g_angle

angle for facet labels, default is 0.

g_position

position for facet labels, default is 'top', can also be 'bottom'.

point_size

size of point.

segment_size

size of segment.

segment_color

color of segment.

xlab

title for x axis.

ylab

title for y axis.

nrow

number of row.

background_color

background color for plot panel.

Value

a ggplot object.

Author(s)

Shixiang Wang [email protected]

Examples

set.seed(1234)
data <- data.frame(
  yval = rnorm(120),
  gr = c(rep("A", 50), rep("B", 40), rep("C", 30))
)
p <- show_group_distribution(data,
  gvar = 2, dvar = 1,
  g_label = "norm",
  background_color = "grey"
)
p
p2 <- show_group_distribution(data,
  gvar = "gr", dvar = "yval",
  g_position = "bottom",
  order_by_fun = TRUE,
  alpha = 0.3
)
p2

# Set custom group names
p3 <- show_group_distribution(data,
  gvar = 2, dvar = 1,
  g_label = c("A" = "X", "B" = "Y", "C" = "Z")
)
p3

Show Group Enrichment Result

Description

See group_enrichment for examples. NOTE the box fill and the box text have different meanings.

Usage

show_group_enrichment(
  df_enrich,
  return_list = FALSE,
  scales = "free",
  add_text_annotation = TRUE,
  fill_by_p_value = TRUE,
  use_fdr = TRUE,
  cut_p_value = FALSE,
  cut_breaks = c(-Inf, -5, log10(0.05), -log10(0.05), 5, Inf),
  cut_labels = c("↓ 1e-5", "↓ 0.05", "non-significant", "↑ 0.05", "↑ 1e-5"),
  fill_scale = scale_fill_gradient2(low = "#08A76B", mid = "white", high = "red",
    midpoint = ifelse(fill_by_p_value, 0, 1)),
  cluster_row = FALSE,
  cluster_col = FALSE,
  ...
)

Arguments

df_enrich

result data.frame from group_enrichment.

return_list

if TRUE, return a list of ggplot object so user can combine multiple plots by other R packages like patchwork.

scales

Should scales be fixed ("fixed", the default), free ("free"), or free in one dimension ("free_x", "free_y")?

add_text_annotation

if TRUE, add text annotation in box. When show p value with filled color, the text indicates relative change; when show relative change with filled color, the text indicates p value.

fill_by_p_value

if TRUE, show log10 based p values with filled color. The +/- of p values indicates change direction. If p vlaues is mapped to fill, then text shows effect size, and vice versa.

use_fdr

if TRUE, show FDR values instead of raw p-values.

cut_p_value

if TRUE, cut p values into 5 regions for better visualization. Only works when fill_by_p_value = TRUE.

cut_breaks

when cut_p_value is TRUE, this option set the (log10 based) breaks.

cut_labels

when cut_p_value is TRUE, this option set the labels.

fill_scale

a Scale object generated by ggplot2 package to set color for continuous values.

cluster_row, cluster_col

if TRUE, cluster rows (or columns) with Hierarchical Clustering ('complete' method).

...

other parameters passing to ggplot2::facet_wrap, only used when return_list is FALSE.

Value

a (list of) ggplot object.


Map Groups using Sankey

Description

This feature is designed for signature analysis. However, users can also use it in other similar situations.

Usage

show_group_mapping(
  data,
  col_to_flow,
  cols_to_map,
  include_sig = FALSE,
  fill_na = FALSE,
  title = NULL,
  xlab = NULL,
  ylab = NULL,
  custom_theme = cowplot::theme_minimal_hgrid()
)

Arguments

data

a data.frame containing signature group and other categorical groups.

col_to_flow

length-1 character showing the column to flow, typically a signature group.

cols_to_map

character vector showing colnames of other groups.

include_sig

default if FALSE, if TRUE, showing signature group.

fill_na

length-1 string to fill NA, default is FALSE.

title

the title.

xlab

label for x axis.

ylab

label for y axis.

custom_theme

theme for plotting, default is cowplot::theme_minimal_hgrid().

Value

a ggplot object

Examples

data <- dplyr::tibble(
  Group1 = rep(LETTERS[1:5], each = 10),
  Group2 = rep(LETTERS[6:15], each = 5),
  zzzz = c(rep("xx", 20), rep("yy", 20), rep(NA, 10))
)
p1 <- show_group_mapping(data, col_to_flow = "Group1", cols_to_map = colnames(data)[-1])
p1

p2 <- show_group_mapping(data,
  col_to_flow = "Group1", cols_to_map = colnames(data)[-1],
  include_sig = TRUE
)
p2

Show Signature Contribution in Clusters

Description

See example section in sig_fit() for an examples.

Usage

show_groups(grp_dt, ...)

Arguments

grp_dt

a result data.table from get_groups.

...

parameters passing to legend(), e.g. x = "topleft".

Value

nothing.

See Also

get_groups, sig_fit.


Show Signature Bootstrap Analysis Results

Description

See details for description.

Usage

show_sig_bootstrap_exposure(
  bt_result,
  sample = NULL,
  signatures = NULL,
  methods = "QP",
  plot_fun = c("boxplot", "violin"),
  agg_fun = c("mean", "median", "min", "max"),
  highlight = "auto",
  highlight_size = 4,
  palette = "aaas",
  title = NULL,
  xlab = FALSE,
  ylab = "Signature exposure",
  width = 0.3,
  dodge_width = 0.8,
  outlier.shape = NA,
  add = "jitter",
  add.params = list(alpha = 0.3),
  ...
)

show_sig_bootstrap_error(
  bt_result,
  sample = NULL,
  methods = "QP",
  plot_fun = c("boxplot", "violin"),
  agg_fun = c("mean", "median"),
  highlight = "auto",
  highlight_size = 4,
  palette = "aaas",
  title = NULL,
  xlab = FALSE,
  ylab = "Reconstruction error (L2 norm)",
  width = 0.3,
  dodge_width = 0.8,
  outlier.shape = NA,
  add = "jitter",
  add.params = list(alpha = 0.3),
  legend = "none",
  ...
)

show_sig_bootstrap_stability(
  bt_result,
  signatures = NULL,
  measure = c("RMSE", "CV", "MAE", "AbsDiff"),
  methods = "QP",
  plot_fun = c("boxplot", "violin"),
  palette = "aaas",
  title = NULL,
  xlab = FALSE,
  ylab = "Signature instability",
  width = 0.3,
  outlier.shape = NA,
  add = "jitter",
  add.params = list(alpha = 0.3),
  ...
)

Arguments

bt_result

result object from sig_fit_bootstrap_batch.

sample

a sample id.

signatures

signatures to show.

methods

a subset of c("NNLS", "QP", "SA").

plot_fun

set the plot function.

agg_fun

set the aggregation function when sample is NULL.

highlight

set the color for optimal solution. Default is "auto", which use the same color as bootstrap results, you can set it to color like "red", "gold", etc.

highlight_size

size for highlighting triangle, default is 4.

palette

the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty".

title

plot main title.

xlab

character vector specifying x axis labels. Use xlab = FALSE to hide xlab.

ylab

character vector specifying y axis labels. Use ylab = FALSE to hide ylab.

width

numeric value between 0 and 1 specifying box width.

dodge_width

dodge width.

outlier.shape

point shape of outlier. Default is 19. To hide outlier, specify outlier.shape = NA. When jitter is added, then outliers will be automatically hidden.

add

character vector for adding another plot element (e.g.: dot plot or error bars). Allowed values are one or the combination of: "none", "dotplot", "jitter", "boxplot", "point", "mean", "mean_se", "mean_sd", "mean_ci", "mean_range", "median", "median_iqr", "median_hilow", "median_q1q3", "median_mad", "median_range"; see ?desc_statby for more details.

add.params

parameters (color, shape, size, fill, linetype) for the argument 'add'; e.g.: add.params = list(color = "red").

...

other parameters passing to ggpubr::ggboxplot or ggpubr::ggviolin.

legend

character specifying legend position. Allowed values are one of c("top", "bottom", "left", "right", "none"). To remove the legend use legend = "none". Legend position can be also specified using a numeric vector c(x, y); see details section.

measure

measure to estimate the exposure instability, can be one of 'RMSE', 'CV', 'MAE' and 'AbsDiff'.

Details

Functions:

  • show_sig_bootstrap_exposure - this function plots exposures from bootstrap samples with both dotted boxplot. The optimal exposure (the exposure from original input) is shown as triangle point. Only one sample can be plotted.

  • show_sig_bootstrap_error - this function plots decomposition errors from bootstrap samples with both dotted boxplot. The error from optimal solution (the decomposition error from original input) is shown as triangle point. Only one sample can be plotted.

  • show_sig_bootstrap_stability - this function plots the signature exposure instability for specified signatures. Currently, the instability measure supports 3 types:

    • 'RMSE' for Mean Root Squared Error (default) of bootstrap exposures and original exposures for each sample.

    • 'CV' for Coefficient of Variation (CV) based on RMSE (i.e. RMSE / btExposure_mean).

    • 'MAE' for Mean Absolute Error of bootstrap exposures and original exposures for each sample.

    • 'AbsDiff' for Absolute Difference between mean bootstram exposure and original exposure.

Value

a ggplot object

References

Huang X, Wojtowicz D, Przytycka TM. Detecting presence of mutational signatures in cancer with confidence. Bioinformatics. 2018;34(2):330–337. doi:10.1093/bioinformatics/btx604

See Also

sig_fit_bootstrap_batch, sig_fit, sig_fit_bootstrap

Examples

if (require("BSgenome.Hsapiens.UCSC.hg19")) {
  laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
  laml <- read_maf(maf = laml.maf)
  mt_tally <- sig_tally(
    laml,
    ref_genome = "BSgenome.Hsapiens.UCSC.hg19",
    use_syn = TRUE
  )

  library(NMF)
  mt_sig <- sig_extract(mt_tally$nmf_matrix,
    n_sig = 3,
    nrun = 2,
    cores = 1
  )

  mat <- t(mt_tally$nmf_matrix)
  mat <- mat[, colSums(mat) > 0]
  bt_result <- sig_fit_bootstrap_batch(mat, sig = mt_sig, n = 10)
  ## Parallel computation
  ## bt_result = sig_fit_bootstrap_batch(mat, sig = mt_sig, n = 10, use_parallel = TRUE)

  ## At default, mean bootstrap exposure for each sample has been calculated
  p <- show_sig_bootstrap_exposure(bt_result, methods = c("QP"))
  ## Show bootstrap exposure (optimal exposure is shown as triangle)
  p1 <- show_sig_bootstrap_exposure(bt_result, methods = c("QP"), sample = "TCGA-AB-2802")
  p1
  p2 <- show_sig_bootstrap_exposure(bt_result,
    methods = c("QP"),
    sample = "TCGA-AB-3012",
    signatures = c("Sig1", "Sig2")
  )
  p2

  ## Show bootstrap error
  ## Similar to exposure above
  p <- show_sig_bootstrap_error(bt_result, methods = c("QP"))
  p
  p3 <- show_sig_bootstrap_error(bt_result, methods = c("QP"), sample = "TCGA-AB-2802")
  p3

  ## Show exposure (in)stability
  p4 <- show_sig_bootstrap_stability(bt_result, methods = c("QP"))
  p4
  p5 <- show_sig_bootstrap_stability(bt_result, methods = c("QP"), measure = "MAE")
  p5
  p6 <- show_sig_bootstrap_stability(bt_result, methods = c("QP"), measure = "AbsDiff")
  p6
  p7 <- show_sig_bootstrap_stability(bt_result, methods = c("QP"), measure = "CV")
  p7
} else {
  message("Please install package 'BSgenome.Hsapiens.UCSC.hg19' firstly!")
}

Show Signature Consensus Map

Description

This function is a wrapper of NMF::consensusmap().

Usage

show_sig_consensusmap(
  sig,
  main = "Consensus matrix",
  tracks = c("consensus:", "silhouette:"),
  lab_row = NA,
  lab_col = NA,
  ...
)

Arguments

sig

a Signature object obtained from sig_extract.

main

Main title as a character string or a grob.

tracks

Special additional annotation tracks to highlight associations between basis components and sample clusters:

basis

matches each row (resp. column) to the most contributing basis component in basismap (resp. coefmap). In basismap (resp. coefmap), adding a track ':basis' to annCol (resp. annRow) makes the column (resp. row) corresponding to the component being also highlited using the mathcing colours.

lab_row

labels for the rows.

lab_col

labels for the columns.

...

other parameters passing to NMF::consensusmap().

Value

nothing


Plot Signature Exposure

Description

Currently support copy number signatures and mutational signatures.

Usage

show_sig_exposure(
  Signature,
  sig_names = NULL,
  groups = NULL,
  grp_order = NULL,
  grp_size = NULL,
  samps = NULL,
  cutoff = NULL,
  style = c("default", "cosmic"),
  palette = use_color_style(style),
  base_size = 12,
  font_scale = 1,
  rm_space = FALSE,
  rm_grid_line = TRUE,
  rm_panel_border = FALSE,
  hide_samps = TRUE,
  legend_position = "top"
)

Arguments

Signature

a Signature object obtained either from sig_extract or sig_auto_extract, or just a raw absolute exposure matrix with column representing samples (patients) and row representing signatures (signature names must end with different digital numbers, e.g. Sig1, Sig10, x12). If you named signatures with letters, you can specify them by sig_names parameter.

sig_names

set name of signatures, can be a character vector.

groups

sample groups, default is NULL.

grp_order

order of groups, default is NULL.

grp_size

font size of groups.

samps

sample vector to filter samples or sort samples, default is NULL.

cutoff

a cutoff value to remove hyper-mutated samples.

style

plot style, one of 'default' and 'cosmic', works when parameter set_gradient_color is FALSE.

palette

palette used to plot, default use a built-in palette according to parameter style.

base_size

overall font size.

font_scale

a number used to set font scale.

rm_space

default is FALSE. If TRUE, it will remove border color and expand the bar width to 1. This is useful when the sample size is big.

rm_grid_line

default is FALSE, if TRUE, remove grid lines of plot.

rm_panel_border

default is TRUE for style 'cosmic', remove panel border to keep plot tight.

hide_samps

if TRUE, hide sample names.

legend_position

position of legend, default is 'top'.

Value

a ggplot object

Author(s)

Shixiang Wang

Examples

# Load mutational signature
load(system.file("extdata", "toy_mutational_signature.RData",
  package = "sigminer", mustWork = TRUE
))
# Show signature exposure
p1 <- show_sig_exposure(sig2)
p1

# Load copy number signature
load(system.file("extdata", "toy_copynumber_signature_by_W.RData",
  package = "sigminer", mustWork = TRUE
))
# Show signature exposure
p2 <- show_sig_exposure(sig)
p2

Draw Corrplot for Signature Exposures and Other Features

Description

This function is for association visualization. Of note, the parameters p_val and drop will affect the visualization of association results under p value threshold.

Usage

show_sig_feature_corrplot(
  tidy_cor,
  feature_list,
  sort_features = FALSE,
  sig_orders = NULL,
  drop = TRUE,
  return_plotlist = FALSE,
  p_val = 0.05,
  xlab = "Signatures",
  ylab = "Features",
  co_gradient_colors = scale_color_gradient2(low = "blue", mid = "white", high = "red",
    midpoint = 0),
  ca_gradient_colors = co_gradient_colors,
  plot_ratio = "auto",
  breaks_count = NULL
)

Arguments

tidy_cor

data returned by get_tidy_association.

feature_list

a character vector contains features want to be plotted. If missing, all features will be used.

sort_features

default is FALSE, use feature order obtained from the previous step. If TRUE, sort features as feature_list.

sig_orders

signature levels for ordering.

drop

if TRUE, when a feature has no association with all signatures (p value larger than threshold set by p_val), this feature will be removed from the plot. Otherwise, this feature (a row) will keep with all blank white.

return_plotlist

if TRUE, return as a list of ggplot objects.

p_val

p value threshold. If p value larger than this threshold, the result becomes blank white.

xlab

label for x axis.

ylab

label for y axis.

co_gradient_colors

a Scale object representing gradient colors used to plot for continuous features.

ca_gradient_colors

a Scale object representing gradient colors used to plot for categorical features.

plot_ratio

a length-2 numeric vector to set the height/width ratio.

breaks_count

breaks for sample count. If set it to NULL, ggplot bin scale will be used to automatically determine the breaks. If set it to NA, aes for sample will be not used.

Value

a ggplot2 object

See Also

get_tidy_association and get_sig_feature_association

Examples

# The data is generated from Wang, Shixiang et al.
load(system.file("extdata", "asso_data.RData",
  package = "sigminer", mustWork = TRUE
))

p <- show_sig_feature_corrplot(
            tidy_data.seqz.feature,
            p_val = 0.05,
            breaks_count = c(0L,200L, 400L, 600L, 800L, 1020L))
p

Show Signature Fit Result

Description

See sig_fit for examples.

Usage

show_sig_fit(
  fit_result,
  samples = NULL,
  signatures = NULL,
  plot_fun = c("boxplot", "violin", "scatter"),
  palette = "aaas",
  title = NULL,
  xlab = FALSE,
  ylab = "Signature exposure",
  legend = "none",
  width = 0.3,
  outlier.shape = NA,
  add = "jitter",
  add.params = list(alpha = 0.3),
  ...
)

Arguments

fit_result

result object from sig_fit.

samples

samples to show, if NULL, all samples are used.

signatures

signatures to show.

plot_fun

set the plot function.

palette

the color palette to be used for coloring or filling by groups. Allowed values include "grey" for grey color palettes; brewer palettes e.g. "RdBu", "Blues", ...; or custom color palette e.g. c("blue", "red"); and scientific journal palettes from ggsci R package, e.g.: "npg", "aaas", "lancet", "jco", "ucscgb", "uchicago", "simpsons" and "rickandmorty".

title

plot main title.

xlab

character vector specifying x axis labels. Use xlab = FALSE to hide xlab.

ylab

character vector specifying y axis labels. Use ylab = FALSE to hide ylab.

legend

character specifying legend position. Allowed values are one of c("top", "bottom", "left", "right", "none"). To remove the legend use legend = "none". Legend position can be also specified using a numeric vector c(x, y); see details section.

width

numeric value between 0 and 1 specifying box width.

outlier.shape

point shape of outlier. Default is 19. To hide outlier, specify outlier.shape = NA. When jitter is added, then outliers will be automatically hidden.

add

character vector for adding another plot element (e.g.: dot plot or error bars). Allowed values are one or the combination of: "none", "dotplot", "jitter", "boxplot", "point", "mean", "mean_se", "mean_sd", "mean_ci", "mean_range", "median", "median_iqr", "median_hilow", "median_q1q3", "median_mad", "median_range"; see ?desc_statby for more details.

add.params

parameters (color, shape, size, fill, linetype) for the argument 'add'; e.g.: add.params = list(color = "red").

...

other arguments to be passed to geom_boxplot, ggpar and facet.

Value

a ggplot object.

See Also

sig_fit, show_sig_bootstrap_exposure, sig_fit_bootstrap, sig_fit_bootstrap_batch


Show Signature Profile

Description

Who don't like to show a barplot for signature profile? This is for it.

Usage

show_sig_profile(
  Signature,
  mode = c("SBS", "copynumber", "DBS", "ID", "RS"),
  method = "Wang",
  by_context = FALSE,
  normalize = c("row", "column", "raw", "feature"),
  y_tr = NULL,
  filters = NULL,
  feature_setting = sigminer::CN.features,
  style = c("default", "cosmic"),
  palette = use_color_style(style, ifelse(by_context, "SBS", mode), method),
  set_gradient_color = FALSE,
  free_space = "free_x",
  rm_panel_border = style == "cosmic",
  rm_grid_line = style == "cosmic",
  rm_axis_text = FALSE,
  bar_border_color = ifelse(style == "default", "grey50", "white"),
  bar_width = 0.7,
  paint_axis_text = TRUE,
  x_label_angle = ifelse(mode == "copynumber" & !(startsWith(method, "T") | method ==
    "X"), 60, 90),
  x_label_vjust = ifelse(mode == "copynumber" & !(startsWith(method, "T") | method ==
    "X"), 1, 0.5),
  x_label_hjust = 1,
  x_lab = "Components",
  y_lab = "auto",
  y_limits = NULL,
  params = NULL,
  show_cv = FALSE,
  params_label_size = 3,
  params_label_angle = 60,
  y_expand = 1,
  digits = 2,
  base_size = 12,
  font_scale = 1,
  sig_names = NULL,
  sig_orders = NULL,
  check_sig_names = TRUE
)

Arguments

Signature

a Signature object obtained either from sig_extract or sig_auto_extract, or just a raw signature matrix with row representing components (motifs) and column representing signatures (column names must start with 'Sig').

mode

signature type for plotting, now supports 'copynumber', 'SBS', 'DBS', 'ID' and 'RS' (genome rearrangement signature).

method

method for copy number feature classification in sig_tally, can be one of "Wang" ("W"), "S".

by_context

for specific use.

normalize

one of 'row', 'column', 'raw' and "feature", for row normalization (signature), column normalization (component), raw data, row normalization by feature, respectively. Of note, 'feature' only works when the mode is 'copynumber'.

y_tr

a function (e.g. log10) to transform y axis before plotting.

filters

a pattern used to select components to plot.

feature_setting

a data.frame used for classification. Only used when method is "Wang" ("W"). Default is CN.features. Users can also set custom input with "feature", "min" and "max" columns available. Valid features can be printed by unique(CN.features$feature).

style

plot style, one of 'default' and 'cosmic', works when parameter set_gradient_color is FALSE.

palette

palette used to plot when set_gradient_color is FALSE, default use a built-in palette according to parameter style.

set_gradient_color

default is FALSE, if TRUE, use gradient colors to fill bars.

free_space

default is 'free_x'. If "fixed", all panels have the same size. If "free_y" their height will be proportional to the length of the y scale; if "free_x" their width will be proportional to the length of the x scale; or if "free" both height and width will vary. This setting has no effect unless the appropriate scales also vary.

rm_panel_border

default is TRUE for style 'cosmic', remove panel border to keep plot tight.

rm_grid_line

default is FALSE, if TRUE, remove grid lines of plot.

rm_axis_text

default is FALSE, if TRUE, remove component texts. This is useful when multiple signature profiles are plotted together.

bar_border_color

the color of bar border.

bar_width

bar width. By default, set to 70% of the resolution of the data.

paint_axis_text

if TRUE, color on text of x axis.

x_label_angle

font angle for x label.

x_label_vjust

font vjust for x label.

x_label_hjust

font hjust for x label.

x_lab

x axis lab.

y_lab

y axis lab.

y_limits

limits to expand in y axis. e.g., 0.2, c(0, 0.3).

params

params data.frame of components, obtained from sig_tally.

show_cv

default is FALSE, if TRUE, show coefficient of variation when params is not NULL.

params_label_size

font size for params label.

params_label_angle

font angle for params label.

y_expand

y expand height for plotting params of copy number signatures.

digits

digits for plotting params of copy number signatures.

base_size

overall font size.

font_scale

a number used to set font scale.

sig_names

subset signatures or set name of signatures, can be a character vector. Default is NULL, prefix 'Sig' plus number is used.

sig_orders

set order of signatures, can be a character vector. Default is NULL, the signatures are ordered by alphabetical order. If an integer vector set, only specified signatures are plotted.

check_sig_names

if TRUE, check signature names when input is a matrix, i.e., all signatures (colnames) must start with 'Sig'.

Value

a ggplot object

Author(s)

Shixiang Wang

See Also

show_sig_profile_loop, show_sig_profile_heatmap

Examples

# Load SBS signature
load(system.file("extdata", "toy_mutational_signature.RData",
  package = "sigminer", mustWork = TRUE
))
# Show signature profile
p1 <- show_sig_profile(sig2, mode = "SBS")
p1

# Use 'y_tr' option to transform values in y axis
p11 <- show_sig_profile(sig2, mode = "SBS", y_tr = function(x) x * 100)
p11

# Load copy number signature from method "W"
load(system.file("extdata", "toy_copynumber_signature_by_W.RData",
  package = "sigminer", mustWork = TRUE
))
# Show signature profile
p2 <- show_sig_profile(sig,
  style = "cosmic",
  mode = "copynumber",
  method = "W",
  normalize = "feature"
)
p2

# Visualize rearrangement signatures
s <- get_sig_db("RS_Nik_lab")
ss <- s$db[, 1:3]
colnames(ss) <- c("Sig1", "Sig2", "Sig3")
p3 <- show_sig_profile(ss, mode = "RS", style = "cosmic")
p3

Show Signature Profile with Heatmap

Description

This is a complementary function to show_sig_profile(), it is used for visualizing some big signatures, i.e. SBS-1536, not all signatures are supported. See details for current supported signatures.

Usage

show_sig_profile_heatmap(
  Signature,
  mode = c("SBS", "DBS"),
  normalize = c("row", "column", "raw"),
  filters = NULL,
  x_lab = NULL,
  y_lab = NULL,
  legend_name = "auto",
  palette = "red",
  x_label_angle = 90,
  x_label_vjust = 1,
  x_label_hjust = 0.5,
  y_label_angle = 0,
  y_label_vjust = 0.5,
  y_label_hjust = 1,
  flip_xy = FALSE,
  sig_names = NULL,
  sig_orders = NULL,
  check_sig_names = TRUE
)

Arguments

Signature

a Signature object obtained either from sig_extract or sig_auto_extract, or just a raw signature matrix with row representing components (motifs) and column representing signatures (column names must start with 'Sig').

mode

one of "SBS" and "DBS".

normalize

one of 'row', 'column', 'raw' and "feature", for row normalization (signature), column normalization (component), raw data, row normalization by feature, respectively. Of note, 'feature' only works when the mode is 'copynumber'.

filters

a pattern used to select components to plot.

x_lab

x label.

y_lab

y label.

legend_name

name of figure legend.

palette

color for value.

x_label_angle

angle for x axis text.

x_label_vjust

vjust for x axis text.

x_label_hjust

hjust for x axis text.

y_label_angle

angle for y axis text.

y_label_vjust

vjust for y axis text.

y_label_hjust

hjust for y axis text.

flip_xy

if TRUE, flip x axis and y axis.

sig_names

subset signatures or set name of signatures, can be a character vector. Default is NULL, prefix 'Sig' plus number is used.

sig_orders

set order of signatures, can be a character vector. Default is NULL, the signatures are ordered by alphabetical order. If an integer vector set, only specified signatures are plotted.

check_sig_names

if TRUE, check signature names when input is a matrix, i.e., all signatures (colnames) must start with 'Sig'.

Details

Support:

  • SBS-24

  • SBS-96

  • SBS-384

  • SBS-1536

  • SBS-6144

  • DBS-78

  • DBS-186

Value

a ggplot object.

Examples

# Load SBS signature
load(system.file("extdata", "toy_mutational_signature.RData",
  package = "sigminer", mustWork = TRUE
))
# Show signature profile
p1 <- show_sig_profile_heatmap(sig2, mode = "SBS")
p1

Show Signature Profile with Loop Way

Description

Show Signature Profile with Loop Way

Usage

show_sig_profile_loop(
  Signature,
  sig_names = NULL,
  ncol = 1,
  nrow = NULL,
  x_lab = "Components",
  ...
)

Arguments

Signature

a Signature object obtained either from sig_extract or sig_auto_extract, or just a raw signature matrix with row representing components (motifs) and column representing signatures (column names must start with 'Sig').

sig_names

subset signatures or set name of signatures, can be a character vector. Default is NULL, prefix 'Sig' plus number is used.

ncol

(optional) Number of columns in the plot grid.

nrow

(optional) Number of rows in the plot grid.

x_lab

x axis lab.

...

other parameters but sig_order passing to show_sig_profile.

Value

a ggplot result from cowplot::plot_grid().

See Also

show_sig_profile

Examples

load(system.file("extdata", "toy_mutational_signature.RData",
  package = "sigminer", mustWork = TRUE
))
# Show signature profile
p1 <- show_sig_profile_loop(sig2, mode = "SBS")
p1
p2 <- show_sig_profile_loop(sig2, mode = "SBS", style = "cosmic", sig_names = c("A", "B", "C"))
p2

Extract Signatures through the Automatic Relevance Determination Technique

Description

A bayesian variant of NMF algorithm to enable optimal inferences for the number of signatures through the automatic relevance determination technique. This functions delevers highly interpretable and sparse representations for both signature profiles and attributions at a balance between data fitting and model complexity (this method may introduce more signatures than expected, especially for copy number signatures (thus I don't recommend you to use this feature to extract copy number signatures)). See detail part and references for more.

Usage

sig_auto_extract(
  nmf_matrix = NULL,
  result_prefix = "BayesNMF",
  destdir = tempdir(),
  method = c("L1W.L2H", "L1KL", "L2KL"),
  strategy = c("stable", "optimal", "ms"),
  ref_sigs = NULL,
  K0 = 25,
  nrun = 10,
  niter = 2e+05,
  tol = 1e-07,
  cores = 1,
  optimize = FALSE,
  skip = FALSE,
  recover = FALSE
)

Arguments

nmf_matrix

a matrix used for NMF decomposition with rows indicate samples and columns indicate components.

result_prefix

prefix for result data files.

destdir

path to save data runs, default is tempdir().

method

default is "L1W.L2H", which uses an exponential prior for W and a half-normal prior for H (This method is used by PCAWG project, see reference #3). You can also use "L1KL" to set expoential priors for both W and H, and "L2KL" to set half-normal priors for both W and H. The latter two methods are originally implemented by SignatureAnalyzer software.

strategy

the selection strategy for returned data. Set 'stable' for getting optimal result from the most frequent K. Set 'optimal' for getting optimal result from all Ks. Set 'ms' for getting result with maximum mean cosine similarity with provided reference signatures. See ref_sigs option for details. If you want select other solution, please check get_bayesian_result.

ref_sigs

A Signature object or matrix or string for specifying reference signatures, only used when strategy = 'ms'. See Signature and sig_db options in get_sig_similarity for details.

K0

number of initial signatures.

nrun

number of independent simulations.

niter

the maximum number of iterations.

tol

tolerance for convergence.

cores

number of cpu cores to run NMF.

optimize

if TRUE, then refit the denovo signatures with QP method, see sig_fit.

skip

if TRUE, it will skip running a previous stored result. This can be used to extend run times, e.g. you try running 10 times firstly and then you want to extend it to 20 times.

recover

if TRUE, try to recover result from previous runs based on input result_prefix, destdir and nrun. This is pretty useful for reproducing result. Please use skip if you want to recover an unfinished job.

Details

There are three methods available in this function: "L1W.L2H", "L1KL" and "L2KL". They use different priors for the bayesian variant of NMF algorithm (see method parameter) written by reference #1 and implemented in SignatureAnalyzer software (reference #2).

I copied source code for the three methods from Broad Institute and supplementary files of reference #3, and wrote this higher function. It is more friendly for users to extract, visualize and analyze signatures by combining with other powerful functions in sigminer package. Besides, I implemented parallel computation to speed up the calculation process and a similar input and output structure like sig_extract().

Value

a list with Signature class.

Author(s)

Shixiang Wang

References

Tan, Vincent YF, and Cédric Févotte. "Automatic relevance determination in nonnegative matrix factorization with the/spl beta/-divergence." IEEE Transactions on Pattern Analysis and Machine Intelligence 35.7 (2012): 1592-1605.

Kim, Jaegil, et al. "Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors." Nature genetics 48.6 (2016): 600.

Alexandrov, Ludmil, et al. "The repertoire of mutational signatures in human cancer." BioRxiv (2018): 322859.

See Also

sig_tally for getting variation matrix, sig_extract for extracting signatures using NMF package, sig_estimate for estimating signature number for sig_extract.

Examples

load(system.file("extdata", "toy_copynumber_tally_W.RData",
  package = "sigminer", mustWork = TRUE
))
res <- sig_auto_extract(cn_tally_W$nmf_matrix, result_prefix = "Test_copynumber", nrun = 1)
# At default, all run files are stored in tempdir()
dir(tempdir(), pattern = "Test_copynumber")

laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read_maf(maf = laml.maf)
mt_tally <- sig_tally(
  laml,
  ref_genome = "BSgenome.Hsapiens.UCSC.hg19",
  use_syn = TRUE
)

x <- sig_auto_extract(mt_tally$nmf_matrix,
  strategy = "ms", nrun = 3, ref_sigs = "legacy"
)
x

Convert Signatures between different Genomic Distribution of Components

Description

Converts signatures between two representations relative to different sets of mutational opportunities. Currently, only SBS signature is supported.

Usage

sig_convert(sig, from = "human-genome", to = "human-exome")

Arguments

sig

a Signature object obtained either from sig_extract or sig_auto_extract, or just a raw signature matrix/data.frame with row representing components (motifs) and column representing signatures.

from

either one of "human-genome" and "human-exome" or an opportunity matrix (repeated n columns with each row represents the total number of mutations for a component, n is the number of signature).

to

same as from.

Details

The default opportunity matrix for "human-genome" and "human-exome" comes from COSMIC signature database v2 and v3.

Value

a matrix.

References

convert_signatures function from sigfit package.

Examples

# Load SBS signature
load(system.file("extdata", "toy_mutational_signature.RData",
  package = "sigminer", mustWork = TRUE
))
# Exome-relative to Genome-relative
sig_converted <- sig_convert(sig2,
  from = "human-exome",
  to = "human-genome"
)
sig_converted


show_sig_profile(sig2, style = "cosmic")
show_sig_profile(sig_converted, style = "cosmic")

Estimate Signature Number

Description

Use NMF package to evaluate the optimal number of signatures. This is used along with sig_extract. Users should library(NMF) firstly. If NMF objects are returned, the result can be further visualized by NMF plot methods like NMF::consensusmap() and NMF::basismap().

sig_estimate() shows comprehensive rank survey generated by NMF package, sometimes it is hard to consider all measures. show_sig_number_survey() provides a one or two y-axis visualization method to help users determine the optimal signature number (showing both stability ("cophenetic") and error (RSS) at default). Users can also set custom measures to show.

show_sig_number_survey2() is modified from NMF package to better help users to explore survey of signature number.

Usage

sig_estimate(
  nmf_matrix,
  range = 2:5,
  nrun = 10,
  use_random = FALSE,
  method = "brunet",
  seed = 123456,
  cores = 1,
  keep_nmfObj = FALSE,
  save_plots = FALSE,
  plot_basename = file.path(tempdir(), "nmf"),
  what = "all",
  verbose = FALSE
)

show_sig_number_survey(
  object,
  x = "rank",
  left_y = "cophenetic",
  right_y = "rss",
  left_name = left_y,
  right_name = toupper(right_y),
  left_color = "black",
  right_color = "red",
  left_shape = 16,
  right_shape = 18,
  shape_size = 4,
  highlight = NULL
)

show_sig_number_survey2(
  x,
  y = NULL,
  what = c("all", "cophenetic", "rss", "residuals", "dispersion", "evar", "sparseness",
    "sparseness.basis", "sparseness.coef", "silhouette", "silhouette.coef",
    "silhouette.basis", "silhouette.consensus"),
  na.rm = FALSE,
  xlab = "Total signatures",
  ylab = "",
  main = "Signature number survey using NMF package"
)

Arguments

nmf_matrix

a matrix used for NMF decomposition with rows indicate samples and columns indicate components.

range

a numeric vector containing the ranks of factorization to try. Note that duplicates are removed and values are sorted in increasing order. The results are notably returned in this order.

nrun

a numeric giving the number of run to perform for each value in range, nrun set to 30~50 is enough to achieve robust result.

use_random

Should generate random data from input to test measurements. Default is TRUE.

method

specification of the NMF algorithm. Use 'brunet' as default. Available methods for NMF decompositions are 'brunet', 'lee', 'ls-nmf', 'nsNMF', 'offset'.

seed

specification of the starting point or seeding method, which will compute a starting point, usually using data from the target matrix in order to provide a good guess.

cores

number of cpu cores to run NMF.

keep_nmfObj

default is FALSE, if TRUE, keep NMF objects from runs, and the result may be huge.

save_plots

if TRUE, save signature number survey plot to local machine.

plot_basename

when save plots, set custom basename for file path.

what

a character vector whose elements partially match one of the following item, which correspond to the measures computed by summary() on each – multi-run – NMF result: 'all', 'cophenetic', 'rss', 'residuals', 'dispersion', 'evar', 'silhouette' (and more specific ⁠*.coef⁠, ⁠*.basis⁠, ⁠*.consensus⁠), 'sparseness' (and more specific ⁠*.coef⁠, ⁠*.basis⁠). It specifies which measure must be plotted (what='all' plots all the measures).

verbose

if TRUE, print extra message.

object

a Survey object generated from sig_estimate, or a data.frame contains at least rank columns and columns for one measure.

x

a data.frame or NMF.rank object obtained from sig_estimate().

left_y

column name for left y axis.

right_y

column name for right y axis.

left_name

label name for left y axis.

right_name

label name for right y axis.

left_color

color for left axis.

right_color

color for right axis.

left_shape, right_shape, shape_size

shape setting.

highlight

a integer to highlight a x.

y

for random simulation, a data.frame or NMF.rank object obtained from sig_estimate().

na.rm

single logical that specifies if the rank for which the measures are NA values should be removed from the graph or not (default to FALSE). This is useful when plotting results which include NAs due to error during the estimation process. See argument stop for nmfEstimateRank.

xlab

x-axis label

ylab

y-axis label

main

main title

Details

The most common approach is to choose the smallest rank for which cophenetic correlation coefficient starts decreasing (Used by this function). Another approach is to choose the rank for which the plot of the residual sum of squares (RSS) between the input matrix and its estimate shows an inflection point. More custom features please directly use NMF::nmfEstimateRank.

Value

  • sig_estimate: a list contains information of NMF run and rank survey.

  • show_sig_number_survey: a ggplot object

  • show_sig_number_survey2: a ggplot object

Author(s)

Shixiang Wang

References

Gaujoux, Renaud, and Cathal Seoighe. "A flexible R package for nonnegative matrix factorization." BMC bioinformatics 11.1 (2010): 367.

See Also

sig_extract for extracting signatures using NMF package, sig_auto_extract for extracting signatures using automatic relevance determination technique.

sig_estimate for estimating signature number for sig_extract, show_sig_number_survey2 for more visualization method.

Examples

load(system.file("extdata", "toy_copynumber_tally_W.RData",
  package = "sigminer", mustWork = TRUE
))
library(NMF)
cn_estimate <- sig_estimate(cn_tally_W$nmf_matrix,
  cores = 1, nrun = 5,
  verbose = TRUE
)

p <- show_sig_number_survey2(cn_estimate$survey)
p

# Show two measures
show_sig_number_survey(cn_estimate)
# Show one measure
p1 <- show_sig_number_survey(cn_estimate, right_y = NULL)
p1
p2 <- add_h_arrow(p, x = 4.1, y = 0.953, label = "selected number")
p2

# Show data from a data.frame
p3 <- show_sig_number_survey(cn_estimate$survey)
p3
# Show other measures
head(cn_estimate$survey)
p4 <- show_sig_number_survey(cn_estimate$survey,
  right_y = "dispersion",
  right_name = "dispersion"
)
p4
p5 <- show_sig_number_survey(cn_estimate$survey,
  right_y = "evar",
  right_name = "evar"
)
p5

Extract Signatures through NMF

Description

Do NMF de-composition and then extract signatures.

Usage

sig_extract(
  nmf_matrix,
  n_sig,
  nrun = 10,
  cores = 1,
  method = "brunet",
  optimize = FALSE,
  pynmf = FALSE,
  use_conda = TRUE,
  py_path = "/Users/wsx/anaconda3/bin/python",
  seed = 123456,
  ...
)

Arguments

nmf_matrix

a matrix used for NMF decomposition with rows indicate samples and columns indicate components.

n_sig

number of signature. Please run sig_estimate to select a suitable value.

nrun

a numeric giving the number of run to perform for each value in range, nrun set to 30~50 is enough to achieve robust result.

cores

number of cpu cores to run NMF.

method

specification of the NMF algorithm. Use 'brunet' as default. Available methods for NMF decompositions are 'brunet', 'lee', 'ls-nmf', 'nsNMF', 'offset'.

optimize

if TRUE, then refit the denovo signatures with QP method, see sig_fit.

pynmf

if TRUE, use Python NMF driver Nimfa. The seed currently is not used by this implementation.

use_conda

if TRUE, create an independent conda environment to run NMF.

py_path

path to Python executable file, e.g. '/Users/wsx/anaconda3/bin/python'. In my test, it is more stable than use_conda=TRUE. You can install the Nimfa package by yourself or set use_conda to TRUE to install required Python environment, and then set this option.

seed

specification of the starting point or seeding method, which will compute a starting point, usually using data from the target matrix in order to provide a good guess.

...

other arguments passed to NMF::nmf().

Value

a list with Signature class.

Author(s)

Shixiang Wang

References

Gaujoux, Renaud, and Cathal Seoighe. "A flexible R package for nonnegative matrix factorization." BMC bioinformatics 11.1 (2010): 367.

Mayakonda, Anand, et al. "Maftools: efficient and comprehensive analysis of somatic variants in cancer." Genome research 28.11 (2018): 1747-1756.

See Also

sig_tally for getting variation matrix, sig_estimate for estimating signature number for sig_extract, sig_auto_extract for extracting signatures using automatic relevance determination technique.

Examples

load(system.file("extdata", "toy_copynumber_tally_W.RData",
  package = "sigminer", mustWork = TRUE
))
# Extract copy number signatures
res <- sig_extract(cn_tally_W$nmf_matrix, 2, nrun = 1)

Fit Signature Exposures with Linear Combination Decomposition

Description

The function performs a signatures decomposition of a given mutational catalogue V with known signatures W by solving the minimization problem ⁠min(||W*H - V||)⁠ where W and V are known.

Usage

sig_fit(
  catalogue_matrix,
  sig,
  sig_index = NULL,
  sig_db = c("legacy", "SBS", "DBS", "ID", "TSB", "SBS_Nik_lab", "RS_Nik_lab",
    "RS_BRCA560", "RS_USARC", "CNS_USARC", "CNS_TCGA", "CNS_TCGA176", "CNS_PCAWG176",
    "SBS_hg19", "SBS_hg38", "SBS_mm9", "SBS_mm10", "DBS_hg19", "DBS_hg38", "DBS_mm9",
    "DBS_mm10", "SBS_Nik_lab_Organ", "RS_Nik_lab_Organ", "latest_SBS_GRCh37",
    "latest_DBS_GRCh37", "latest_ID_GRCh37", "latest_SBS_GRCh38", "latest_DBS_GRCh38",
    "latest_SBS_mm9", "latest_DBS_mm9", "latest_SBS_mm10", "latest_DBS_mm10",
    "latest_SBS_rn6", "latest_DBS_rn6", "latest_CN_GRCh37", 
    
    "latest_RNA-SBS_GRCh37", "latest_SV_GRCh38"),
  db_type = c("", "human-exome", "human-genome"),
  show_index = TRUE,
  method = c("QP", "NNLS", "SA"),
  auto_reduce = FALSE,
  type = c("absolute", "relative"),
  return_class = c("matrix", "data.table"),
  return_error = FALSE,
  rel_threshold = 0,
  mode = c("SBS", "DBS", "ID", "copynumber"),
  true_catalog = NULL,
  ...
)

Arguments

catalogue_matrix

a numeric matrix V with row representing components and columns representing samples, typically you can get nmf_matrix from sig_tally() and transpose it by t().

sig

a Signature object obtained either from sig_extract or sig_auto_extract, or just a raw signature matrix/data.frame with row representing components (motifs) and column representing signatures.

sig_index

a vector for signature index. "ALL" for all signatures.

sig_db

default 'legacy', it can be 'legacy' (for COSMIC v2 'SBS'), 'SBS', 'DBS', 'ID' and 'TSB' (for COSMIV v3.1 signatures) for small scale mutations. For more specific details, it can also be 'SBS_hg19', 'SBS_hg38', 'SBS_mm9', 'SBS_mm10', 'DBS_hg19', 'DBS_hg38', 'DBS_mm9', 'DBS_mm10' to use COSMIC v3 reference signatures from Alexandrov, Ludmil B., et al. (2020) (reference #1). In addition, it can be one of "SBS_Nik_lab_Organ", "RS_Nik_lab_Organ", "SBS_Nik_lab", "RS_Nik_lab" to refer reference signatures from Degasperi, Andrea, et al. (2020) (reference #2); "RS_BRCA560", "RS_USARC" to reference signatures from BRCA560 and USARC cohorts; "CNS_USARC" (40 categories), "CNS_TCGA" (48 categories) to reference copy number signatures from USARC cohort and TCGA; "CNS_TCGA176" (176 categories) and "CNS_PCAWG176" (176 categories) to reference copy number signatures from PCAWG and TCGA separately. UPDATE, the latest version of reference version can be automatically downloaded and loaded from https://cancer.sanger.ac.uk/signatures/downloads/ when a option with latest_ prefix is specified (e.g. "latest_SBS_GRCh37"). Note: the signature profile for different genome builds are basically same. And specific database (e.g. 'SBS_mm10') contains less signatures than all COSMIC signatures (because some signatures are not detected from Alexandrov, Ludmil B., et al. (2020)). For all available options, check the parameter setting.

db_type

only used when sig_db is enabled. "" for keeping default, "human-exome" for transforming to exome frequency of component, and "human-genome" for transforming to whole genome frequency of component. Currently only works for 'SBS'.

show_index

if TRUE, show valid indices.

method

method to solve the minimazation problem. 'NNLS' for non-negative least square; 'QP' for quadratic programming; 'SA' for simulated annealing.

auto_reduce

if TRUE, try reducing the input reference signatures to increase the cosine similarity of reconstructed profile to observed profile.

type

'absolute' for signature exposure and 'relative' for signature relative exposure.

return_class

string, 'matrix' or 'data.table'.

return_error

if TRUE, also return sample error (Frobenius norm) and cosine similarity between observed sample profile (asa. spectrum) and reconstructed profile. NOTE: it is better to obtain the error when the type is 'absolute', because the error is affected by relative exposure accuracy.

rel_threshold

numeric vector, a signature with relative exposure lower than (equal is included, i.e. <=) this value will be set to 0 (both absolute exposure and relative exposure). In this case, sum of signature contribution may not equal to 1.

mode

signature type for plotting, now supports 'copynumber', 'SBS', 'DBS', 'ID' and 'RS' (genome rearrangement signature).

true_catalog

used by sig_fit_bootstrap, user never use it.

...

control parameters passing to argument control in GenSA function when use method 'SA'.

Details

The method 'NNLS' solves the minimization problem with nonnegative least-squares constraints. The method 'QP' and 'SA' are modified from SignatureEstimation package. See references for details. Of note, when fitting exposures for copy number signatures, only components of feature CN is used.

Value

The exposure result either in matrix or data.table format. If return_error set TRUE, a list is returned.

References

Daniel Huebschmann, Zuguang Gu and Matthias Schlesner (2019). YAPSA: Yet Another Package for Signature Analysis. R package version 1.12.0.

Huang X, Wojtowicz D, Przytycka TM. Detecting presence of mutational signatures in cancer with confidence. Bioinformatics. 2018;34(2):330–337. doi:10.1093/bioinformatics/btx604

Kim, Jaegil, et al. "Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors." Nature genetics 48.6 (2016): 600.

See Also

sig_extract, sig_auto_extract, sig_fit_bootstrap, sig_fit_bootstrap_batch

Examples

# For mutational signatures ----------------
# SBS is used for illustration, similar
# operations can be applied to DBS, INDEL, CN, RS, etc.

# Load simulated data
data("simulated_catalogs")
data = simulated_catalogs$set1
data[1:5, 1:5]

# Fitting with all COSMIC v2 reference signatures
sig_fit(data, sig_index = "ALL")
# Check ?sig_fit for sig_db options
# e.g., use the COSMIC SBS v3
sig_fit(data, sig_index = "ALL", sig_db = "SBS")

# Fitting with specified signatures
# opt 1. use selected reference signatures
sig_fit(data, sig_index = c(1, 5, 9, 2, 13), sig_db = "SBS")
# opt 2. use user specified signatures
ref = get_sig_db()$db
ref[1:5, 1:5]
ref = ref[, 1:10]
# The `sig` used here can be result object from `sig_extract`
# or any reference matrix with similar structure (96-motif)
v1 = sig_fit(data, sig = ref)
v1

# If possible, auto-reduce the reference signatures
# for better fitting data from a sample
v2 = sig_fit(data, sig = ref, auto_reduce = TRUE)
v2

all.equal(v1, v2)

# Some samples reported signatures dropped
# but its original activity values are 0s,
# so the data remain same (0 -> 0)
all.equal(v1[, 2], v2[, 2])

# For COSMIC_10, 6.67638 -> 0
v1[, 4]; v2[, 4]
all.equal(v1[, 4], v2[, 4])

# For general purpose -----------------------

W <- matrix(c(1, 2, 3, 4, 5, 6), ncol = 2)
colnames(W) <- c("sig1", "sig2")
W <- apply(W, 2, function(x) x / sum(x))

H <- matrix(c(2, 5, 3, 6, 1, 9, 1, 2), ncol = 4)
colnames(H) <- paste0("samp", 1:4)

V <- W %*% H
V

if (requireNamespace("quadprog", quietly = TRUE)) {
  H_infer <- sig_fit(V, W, method = "QP")
  H_infer
  H

  H_dt <- sig_fit(V, W, method = "QP", auto_reduce = TRUE, return_class = "data.table")
  H_dt

  ## Show results
  show_sig_fit(H_infer)
  show_sig_fit(H_dt)

  ## Get clusters/groups
  H_dt_rel <- sig_fit(V, W, return_class = "data.table", type = "relative")
  z <- get_groups(H_dt_rel, method = "k-means")
  show_groups(z)
}

# if (requireNamespace("GenSA", quietly = TRUE)) {
#   H_infer <- sig_fit(V, W, method = "SA")
#   H_infer
#   H
#
#   H_dt <- sig_fit(V, W, method = "SA", return_class = "data.table")
#   H_dt
#
#   ## Modify arguments to method
#   sig_fit(V, W, method = "SA", maxit = 10, temperature = 100)
#
#   ## Show results
#   show_sig_fit(H_infer)
#   show_sig_fit(H_dt)
# }

Obtain Bootstrap Distribution of Signature Exposures of a Certain Tumor Sample

Description

This can be used to obtain the confidence of signature exposures or search the suboptimal decomposition solution.

Usage

sig_fit_bootstrap(
  catalog,
  sig,
  n = 100L,
  sig_index = NULL,
  sig_db = "legacy",
  db_type = c("", "human-exome", "human-genome"),
  show_index = TRUE,
  method = c("QP", "NNLS", "SA"),
  auto_reduce = FALSE,
  SA_not_bootstrap = FALSE,
  type = c("absolute", "relative"),
  rel_threshold = 0,
  mode = c("SBS", "DBS", "ID", "copynumber"),
  find_suboptimal = FALSE,
  suboptimal_ref_error = NULL,
  suboptimal_factor = 1.05,
  ...
)

Arguments

catalog

a named numeric vector or a numeric matrix with dimension Nx1. N is the number of component, 1 is the sample.

sig

a Signature object obtained either from sig_extract or sig_auto_extract, or just a raw signature matrix/data.frame with row representing components (motifs) and column representing signatures.

n

the number of bootstrap replicates.

sig_index

a vector for signature index. "ALL" for all signatures.

sig_db

default 'legacy', it can be 'legacy' (for COSMIC v2 'SBS'), 'SBS', 'DBS', 'ID' and 'TSB' (for COSMIV v3.1 signatures) for small scale mutations. For more specific details, it can also be 'SBS_hg19', 'SBS_hg38', 'SBS_mm9', 'SBS_mm10', 'DBS_hg19', 'DBS_hg38', 'DBS_mm9', 'DBS_mm10' to use COSMIC v3 reference signatures from Alexandrov, Ludmil B., et al. (2020) (reference #1). In addition, it can be one of "SBS_Nik_lab_Organ", "RS_Nik_lab_Organ", "SBS_Nik_lab", "RS_Nik_lab" to refer reference signatures from Degasperi, Andrea, et al. (2020) (reference #2); "RS_BRCA560", "RS_USARC" to reference signatures from BRCA560 and USARC cohorts; "CNS_USARC" (40 categories), "CNS_TCGA" (48 categories) to reference copy number signatures from USARC cohort and TCGA; "CNS_TCGA176" (176 categories) and "CNS_PCAWG176" (176 categories) to reference copy number signatures from PCAWG and TCGA separately. UPDATE, the latest version of reference version can be automatically downloaded and loaded from https://cancer.sanger.ac.uk/signatures/downloads/ when a option with latest_ prefix is specified (e.g. "latest_SBS_GRCh37"). Note: the signature profile for different genome builds are basically same. And specific database (e.g. 'SBS_mm10') contains less signatures than all COSMIC signatures (because some signatures are not detected from Alexandrov, Ludmil B., et al. (2020)). For all available options, check the parameter setting.

db_type

only used when sig_db is enabled. "" for keeping default, "human-exome" for transforming to exome frequency of component, and "human-genome" for transforming to whole genome frequency of component. Currently only works for 'SBS'.

show_index

if TRUE, show valid indices.

method

method to solve the minimazation problem. 'NNLS' for non-negative least square; 'QP' for quadratic programming; 'SA' for simulated annealing.

auto_reduce

if TRUE, try reducing the input reference signatures to increase the cosine similarity of reconstructed profile to observed profile.

SA_not_bootstrap

if TRUE, directly run 'SA' multiple times with original input instead of bootstrap samples.

type

'absolute' for signature exposure and 'relative' for signature relative exposure.

rel_threshold

numeric vector, a signature with relative exposure lower than (equal is included, i.e. <=) this value will be set to 0 (both absolute exposure and relative exposure). In this case, sum of signature contribution may not equal to 1.

mode

signature type for plotting, now supports 'copynumber', 'SBS', 'DBS', 'ID' and 'RS' (genome rearrangement signature).

find_suboptimal

logical, if TRUE, find suboptimal decomposition with slightly higher error than the optimal solution by method 'SA'. This is useful to explore hidden dependencies between signatures. More see reference.

suboptimal_ref_error

baseline error used for finding suboptimal solution. if it is NULL, then use 'SA' method to obtain the optimal error.

suboptimal_factor

suboptimal factor to get suboptimal error, default is 1.05, i.e., suboptimal error is 1.05 times baseline error.

...

control parameters passing to argument control in GenSA function when use method 'SA'.

Value

a list

References

Huang X, Wojtowicz D, Przytycka TM. Detecting presence of mutational signatures in cancer with confidence. Bioinformatics. 2018;34(2):330–337. doi:10.1093/bioinformatics/btx604

See Also

report_bootstrap_p_value, sig_fit, sig_fit_bootstrap_batch

Examples

# This function is designed for processing
# one sample, thus is not very useful in practice
# please check `sig_fit_bootstrap_batch`

# For general purpose -------------------
W <- matrix(c(1, 2, 3, 4, 5, 6), ncol = 2)
colnames(W) <- c("sig1", "sig2")
W <- apply(W, 2, function(x) x / sum(x))

H <- matrix(c(2, 5, 3, 6, 1, 9, 1, 2), ncol = 4)
colnames(H) <- paste0("samp", 1:4)

V <- W %*% H
V

if (requireNamespace("quadprog", quietly = TRUE)) {
  H_bootstrap <- sig_fit_bootstrap(V[, 1], W, n = 10, type = "absolute")
  ## Typically, you have to run many times to get close to the answer
  boxplot(t(H_bootstrap$expo))
  H[, 1]

  ## Return P values
  ## In practice, run times >= 100
  ## is recommended
  report_bootstrap_p_value(H_bootstrap)
  ## For multiple samples
  ## Input a list
  report_bootstrap_p_value(list(samp1 = H_bootstrap, samp2 = H_bootstrap))

  #   ## Find suboptimal decomposition
  #   H_suboptimal <- sig_fit_bootstrap(V[, 1], W,
  #     n = 10,
  #     type = "absolute",
  #     method = "SA",
  #     find_suboptimal = TRUE
  #   )
}

Exposure Instability Analysis of Signature Exposures with Bootstrapping

Description

Read sig_fit_bootstrap for more option setting.

Usage

sig_fit_bootstrap_batch(
  catalogue_matrix,
  methods = c("QP"),
  n = 100L,
  min_count = 1L,
  p_val_thresholds = c(0.05),
  use_parallel = FALSE,
  seed = 123456L,
  job_id = NULL,
  result_dir = tempdir(),
  ...
)

Arguments

catalogue_matrix

a numeric matrix V with row representing components and columns representing samples, typically you can get nmf_matrix from sig_tally() and transpose it by t().

methods

a subset of c("NNLS", "QP", "SA").

n

the number of bootstrap replicates.

min_count

minimal exposure in a sample, default is 1. Any patient has total exposure less than this value will be filtered out.

p_val_thresholds

a vector of relative exposure threshold for calculating p values.

use_parallel

if TRUE, use parallel computation based on furrr package. It can also be an integer for specifying cores.

seed

random seed to reproduce the result.

job_id

a job ID, default is NULL, can be a string. When not NULL, all bootstrapped results will be saved to local machine location defined by result_dir. This is very useful for running more than 10 times for more than 100 samples.

result_dir

see above, default is temp directory defined by R.

...

other common parameters passing to sig_fit_bootstrap, including sig, sig_index, sig_db, db_type, mode, auto_reduce etc.

Value

a list of data.table.

See Also

sig_fit, sig_fit_bootstrap

Examples

# For mutational signatures ----------------
# SBS is used for illustration, similar
# operations can be applied to DBS, INDEL, CN, RS, etc.

# Load simulated data
data("simulated_catalogs")
data = simulated_catalogs$set1
data[1:5, 1:5]

# Fitting with COSMIC reference signatures

# Generally set n = 100
rv = sig_fit_bootstrap_batch(data,
  sig_index = c(1, 5, 9, 2, 13),
   sig_db = "SBS", n = 10)
rv


# For general purpose --------------------
W <- matrix(c(1, 2, 3, 4, 5, 6), ncol = 2)
colnames(W) <- c("sig1", "sig2")
W <- apply(W, 2, function(x) x / sum(x))

H <- matrix(c(2, 5, 3, 6, 1, 9, 1, 2), ncol = 4)
colnames(H) <- paste0("samp", 1:4)

V <- W %*% H
V

if (requireNamespace("quadprog")) {
  z10 <- sig_fit_bootstrap_batch(V, sig = W, n = 10)
  z10
}

Obtain or Modify Signature Information

Description

Obtain or Modify Signature Information

Usage

sig_names(sig)

sig_modify_names(sig, new_names)

sig_number(sig)

sig_attrs(sig)

sig_signature(sig, normalize = c("row", "column", "raw", "feature"))

sig_exposure(sig, type = c("absolute", "relative"))

Arguments

sig

a Signature object obtained either from sig_extract or sig_auto_extract.

new_names

new signature names.

normalize

one of 'row', 'column', 'raw' and "feature", for row normalization (signature), column normalization (component), raw data, row normalization by feature, respectively.

type

one of 'absolute' and 'relative'.

Value

a Signature object or data.

Examples

## Operate signature names
load(system.file("extdata", "toy_mutational_signature.RData",
  package = "sigminer", mustWork = TRUE
))
sig_names(sig2)
cc <- sig_modify_names(sig2, new_names = c("Sig2", "Sig1", "Sig3"))
sig_names(cc)

# The older names are stored in tags.
print(attr(cc, "tag"))
## Get signature number
sig_number(sig2)
## Get signature attributes
sig_number(sig2)
## Get signature matrix
z <- sig_signature(sig2)
z <- sig_signature(sig2, normalize = "raw")
## Get exposure matrix
## Of note, this is different from get_sig_exposure()
## it returns a matrix instead of data table.
z <- sig_exposure(sig2) # it is same as sig$Exposure
z <- sig_exposure(sig2, type = "relative") # it is same as sig2$Exposure.norm

Tally a Genomic Alteration Object

Description

Tally a variation object like MAF, CopyNumber and return a matrix for NMF de-composition and more. This is a generic function, so it can be further extended to other mutation cases. Please read details about how to set sex for identifying copy number signatures. Please read https://osf.io/s93d5/ for the generation of SBS, DBS and ID (INDEL) components.

Usage

sig_tally(object, ...)

## S3 method for class 'CopyNumber'
sig_tally(
  object,
  method = "Wang",
  ignore_chrs = NULL,
  indices = NULL,
  add_loh = FALSE,
  feature_setting = sigminer::CN.features,
  cores = 1,
  keep_only_matrix = FALSE,
  ...
)

## S3 method for class 'RS'
sig_tally(object, keep_only_matrix = FALSE, ...)

## S3 method for class 'MAF'
sig_tally(
  object,
  mode = c("SBS", "DBS", "ID", "ALL"),
  ref_genome = "BSgenome.Hsapiens.UCSC.hg19",
  genome_build = NULL,
  add_trans_bias = FALSE,
  ignore_chrs = NULL,
  use_syn = TRUE,
  keep_only_matrix = FALSE,
  ...
)

Arguments

object

a CopyNumber object or MAF object or SV object (from read_sv_as_rs).

...

custom setting for operating object. Detail see S3 method for corresponding class (e.g. CopyNumber).

method

method for feature classification, can be one of "Wang" ("W"), "S" (for method described in Steele et al. 2019), "X" (for method described in Tao et al. 2023).

ignore_chrs

Chromsomes to ignore from analysis. e.g. chrX and chrY.

indices

integer vector indicating segments to keep.

add_loh

flag to add LOH classifications.

feature_setting

a data.frame used for classification. Only used when method is "Wang" ("W"). Default is CN.features. Users can also set custom input with "feature", "min" and "max" columns available. Valid features can be printed by unique(CN.features$feature).

cores

number of computer cores to run this task. You can use future::availableCores() function to check how many cores you can use.

keep_only_matrix

if TRUE, keep only matrix for signature extraction. For a MAF object, this will just return the most useful matrix.

mode

type of mutation matrix to extract, can be one of 'SBS', 'DBS' and 'ID'.

ref_genome

'BSgenome.Hsapiens.UCSC.hg19', 'BSgenome.Hsapiens.UCSC.hg38', 'BSgenome.Mmusculus.UCSC.mm10', 'BSgenome.Mmusculus.UCSC.mm9', etc.

genome_build

genome build 'hg19', 'hg38', 'mm9' or "mm10", if not set, guess it by ref_genome.

add_trans_bias

if TRUE, consider transcriptional bias categories. 'T:' for Transcribed (the variant is on the transcribed strand); 'U:' for Un-transcribed (the variant is on the untranscribed strand); 'B:' for Bi-directional (the variant is on both strand and is transcribed either way); 'N:' for Non-transcribed (the variant is in a non-coding region and is untranslated); 'Q:' for Questionable. NOTE: the result counts of 'B' and 'N' labels are a little different from SigProfilerMatrixGenerator, the reason is unknown (may be caused by annotation file).

use_syn

Logical. If TRUE, include synonymous variants in analysis.

Details

For identifying copy number signatures, we have to derive copy number features firstly. Due to the difference of copy number values in sex chromosomes between male and female, we have to do an extra step if we don't want to ignore them.

I create two options to control this, the default values are shown as the following, you can use the same way to set (per R session).

options(sigminer.sex = "female", sigminer.copynumber.max = NA_integer_)

  • If your cohort are all females, you can totally ignore this.

  • If your cohort are all males, set sigminer.sex to 'male' and sigminer.copynumber.max to a proper value (the best is consistent with read_copynumber).

  • If your cohort contains both males and females, set sigminer.sex as a data.frame with two columns "sample" and "sex". And set sigminer.copynumber.max to a proper value (the best is consistent with read_copynumber).

Value

a list contains a matrix used for NMF de-composition.

Methods (by class)

  • sig_tally(CopyNumber): Returns copy number features, components and component-by-sample matrix

  • sig_tally(RS): Returns genome rearrangement sample-by-component matrix

  • sig_tally(MAF): Returns SBS mutation sample-by-component matrix and APOBEC enrichment

Author(s)

Shixiang Wang

References

Wang, Shixiang, et al. "Copy number signature analyses in prostate cancer reveal distinct etiologies and clinical outcomes." medRxiv (2020).

Steele, Christopher D., et al. "Undifferentiated sarcomas develop through distinct evolutionary pathways." Cancer Cell 35.3 (2019): 441-456.

Mayakonda, Anand, et al. "Maftools: efficient and comprehensive analysis of somatic variants in cancer." Genome research 28.11 (2018): 1747-1756.

Roberts SA, Lawrence MS, Klimczak LJ, et al. An APOBEC Cytidine Deaminase Mutagenesis Pattern is Widespread in Human Cancers. Nature genetics. 2013;45(9):970-976. doi:10.1038/ng.2702.

Bergstrom EN, Huang MN, Mahto U, Barnes M, Stratton MR, Rozen SG, Alexandrov LB: SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics 2019, 20:685 https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6041-2

See Also

sig_estimate for estimating signature number for sig_extract, sig_auto_extract for extracting signatures using automatic relevance determination technique.

Examples

# Load copy number object
load(system.file("extdata", "toy_copynumber.RData",
  package = "sigminer", mustWork = TRUE
))

# Use method designed by Wang, Shixiang et al.
cn_tally_W <- sig_tally(cn, method = "W")

# Use method designed by Steele et al.
# See example in read_copynumber

# Prepare SBS signature analysis
laml.maf <- system.file("extdata", "tcga_laml.maf.gz", package = "maftools")
laml <- read_maf(maf = laml.maf)
if (require("BSgenome.Hsapiens.UCSC.hg19")) {
  mt_tally <- sig_tally(
    laml,
    ref_genome = "BSgenome.Hsapiens.UCSC.hg19",
    use_syn = TRUE
  )
  mt_tally$nmf_matrix[1:5, 1:5]

  ## Use strand bias categories
  mt_tally <- sig_tally(
    laml,
    ref_genome = "BSgenome.Hsapiens.UCSC.hg19",
    use_syn = TRUE, add_trans_bias = TRUE
  )
  ## Test it by enrichment analysis
  enrich_component_strand_bias(mt_tally$nmf_matrix)
  enrich_component_strand_bias(mt_tally$all_matrices$SBS_24)
} else {
  message("Please install package 'BSgenome.Hsapiens.UCSC.hg19' firstly!")
}

An Unified Interface to Extract Signatures

Description

This function provides an unified interface to signature extractor implemented in sigminer. If you determine a specific approach, please also read the documentation of corresponding extractor. See "Arguments" part.

Usage

sig_unify_extract(
  nmf_matrix,
  range = 2:5,
  nrun = 10,
  approach = c("bayes_nmf", "repeated_nmf", "bootstrap_nmf", "sigprofiler"),
  cores = 1L,
  ...
)

Arguments

nmf_matrix

a matrix used for NMF decomposition with rows indicate samples and columns indicate components.

range

signature number range, i.e. 2:5.

nrun

the number of iteration to be performed to extract each signature number.

approach

approach name.

cores

number of cores used for computation.

...

other parameters passing to signature extractor based on the approach setting.

Value

Result dependent on the approach setting.

See Also

sig_extract, sig_auto_extract, bp_extract_signatures, sigprofiler

Examples

load(system.file("extdata", "toy_copynumber_tally_W.RData",
  package = "sigminer", mustWork = TRUE
))
# Extract signatures
# It is same as sig_extract(cn_tally_W$nmf_matrix, 2, nrun = 1)
res <- sig_unify_extract(cn_tally_W$nmf_matrix, 2,
  nrun = 1,
  approach = "repeated_nmf"
)
# Auto-extract signatures based on bayesian NMF
res2 <- sig_unify_extract(cn_tally_W$nmf_matrix,
  nrun = 1,
  approach = "bayes_nmf"
)

Extract Signatures with SigProfiler

Description

This function provides an interface to software SigProfiler. More please see https://github.com/AlexandrovLab/SigProfilerExtractor. Typically, a reference genome is not required because the input is a matrix (my understanding). If you are using refitting result by SigProfiler, please make sure you have input the matrix same order as examples at https://github.com/AlexandrovLab/SigProfilerMatrixGenerator/tree/master/SigProfilerMatrixGenerator/references/matrix/BRCA_example. If not, use sigprofiler_reorder() firstly.

Usage

sigprofiler_extract(
  nmf_matrix,
  output,
  output_matrix_only = FALSE,
  range = 2:5,
  nrun = 10L,
  refit = FALSE,
  refit_plot = FALSE,
  is_exome = FALSE,
  init_method = c("random", "nndsvd_min", "nndsvd", "nndsvda", "nndsvdar"),
  cores = -1L,
  genome_build = c("hg19", "hg38", "T2T", "mm10", "mm9", "ce11"),
  use_conda = FALSE,
  py_path = NULL,
  sigprofiler_version = "1.1.3"
)

sigprofiler_import(
  output,
  order_by_expo = FALSE,
  type = c("suggest", "refit", "all")
)

sigprofiler_reorder(
  nmf_matrix,
  type = c("SBS96", "SBS6", "SBS12", "SBS192", "SBS1536", "SBS3072", "DBS78", "DBS312",
    "DBS1248", "DBS4992")
)

Arguments

nmf_matrix

a matrix used for NMF decomposition with rows indicate samples and columns indicate components.

output

output directory.

output_matrix_only

if TRUE, only generate matrix file for SigProfiler so user can call SigProfiler with the input by himself.

range

signature number range, i.e. 2:5.

nrun

the number of iteration to be performed to extract each signature number.

refit

if TRUE, then refit the denovo signatures with nnls. Same meaning as optimize option in sig_extract or sig_auto_extract.

refit_plot

if TRUE, SigProfiler will make denovo to COSMIC sigantures decompostion plots. However, this may fail due to some matrix cannot be identified by SigProfiler plot program.

is_exome

if TRUE, the exomes will be extracted.

init_method

the initialization algorithm for W and H matrix of NMF. Options are 'random', 'nndsvd', 'nndsvda', 'nndsvdar', 'alexandrov-lab-custom' and 'nndsvd_min'.

cores

number of cores used for computation.

genome_build

I think this option is useless when input is matrix, keep it in case it is useful.

use_conda

if TRUE, create an independent conda environment to run SigProfiler.

py_path

path to Python executable file, e.g. '/Users/wsx/anaconda3/bin/python'.

sigprofiler_version

version of SigProfilerExtractor. If this package is not installed, the specified package will be installed. If this package is installed, this option is useless.

order_by_expo

if TRUE, order the import signatures by their exposures, e.g. the signature contributed the most exposure in all samples will be named as Sig1.

type

mutational signature type.

Value

For sigprofiler_extract(), returns nothing. See output directory.

For sigprofiler_import(), a list containing Signature object.

A NMF matrix for input of sigprofiler_extract().

Examples

if (FALSE) {
  load(system.file("extdata", "toy_copynumber_tally_W.RData",
    package = "sigminer", mustWork = TRUE
  ))

  reticulate::conda_list()

  sigprofiler_extract(cn_tally_W$nmf_matrix, "~/test/test_sigminer",
    use_conda = TRUE
  )

  sigprofiler_extract(cn_tally_W$nmf_matrix, "~/test/test_sigminer",
    use_conda = FALSE, py_path = "/Users/wsx/anaconda3/bin/python"
  )
}

data("simulated_catalogs")
sigprofiler_reorder(t(simulated_catalogs$set1))

A List of Simulated SBS-96 Catalog Matrix

Description

Data from doi:10.1038/s43018-020-0027-5. 5 simulated mutation catalogs are used by the paper but only 4 are available. The data are simulated from COSMIC mutational signatures 1, 2, 3, 5, 6, 8, 12, 13, 17 and 18. Each sample is a linear combination of 5 randomly selected signatures with the addiction of Poisson noise. The number of mutation in each sample is randomly selected between 1,000 and 50,000 mutations, in log scale so that a lower number of mutations is more likely to be selected. The proportion of each signature in each sample is also random.

Format

A list of matrix

Source

Generate from code under data_raw/

Examples

data(simulated_catalogs)

Simulation Analysis

Description

  • simulate_signature() - Simulate signatures from signature pool.

  • simulate_catalogue() - Simulate catalogs from signature/catalog pool.

  • simulate_catalogue_matrix() - Simulate a bootstrapped catalog matrix.

Usage

simulate_signature(x, weights = NULL)

simulate_catalogue(x, n, weights = NULL)

simulate_catalogue_matrix(x)

Arguments

x

a numeric vector representing a signature/catalog or matrix with rows representing signatures/samples and columns representing components.

weights

a numeric vector for weights.

n

an integer indicating mutation number to be generated in a catalog.

Value

a matrix.

Examples

# Generate a catalog
set.seed(1234)
catalog <- as.integer(table(sample(1:96, 1000, replace = TRUE)))
names(catalog) <- paste0("comp", 1:96)
# Generate a signature
sig <- catalog / sum(catalog)

# Simulate catalogs
x1 <- simulate_catalogue(catalog, 10) # 10 mutations
x1
x2 <- simulate_catalogue(catalog, 100) # 100 mutations
x2
x3 <- simulate_catalogue(catalog, 1000) # 1000 mutations
x3
# Similar with a signature
x4 <- simulate_catalogue(sig, 10) # 10 mutations
x4

# Load SBS signature
load(system.file("extdata", "toy_mutational_signature.RData",
  package = "sigminer", mustWork = TRUE
))
s <- t(sig2$Signature.norm)
# Generate a signature from multiple signatures/catalogs
s1 <- simulate_signature(s)
s1
s2 <- simulate_signature(s, weights = 1:3)
s2
# Generate a catalog from multiple signatures/catalogs
c1 <- simulate_catalogue(s, 100, weights = 1:3)
c1

Subsetting CopyNumber object

Description

Subset data slot of CopyNumber object, un-selected rows will move to dropoff.segs slot, annotation slot will update in the same way.

Usage

## S3 method for class 'CopyNumber'
subset(x, subset = TRUE, ...)

Arguments

x

a CopyNumber object to be subsetted.

subset

logical expression indicating rows to keep.

...

further arguments to be passed to or from other methods. Useless here.

Value

a CopyNumber object

Author(s)

Shixiang Wang


Merged Transcript Location at Genome Build hg19

Description

Merged Transcript Location at Genome Build hg19

Format

A data.table

Source

from GENCODE release v33.

Examples

data(transcript.hg19)

Merged Transcript Location at Genome Build hg38

Description

Merged Transcript Location at Genome Build hg38

Format

A data.table

Source

from GENCODE release v33.

Examples

data(transcript.hg38)

Merged Transcript Location at Genome Build mm10

Description

Merged Transcript Location at Genome Build mm10

Format

A data.table

Source

from GENCODE release M25.

Examples

data(transcript.mm10)

Merged Transcript Location at Genome Build mm9

Description

Merged Transcript Location at Genome Build mm9

Format

A data.table

Source

from UCSC http://hgdownload.cse.ucsc.edu/goldenPath/mm9/database/transcriptome.txt.gz

Examples

data(transcript.mm9)

Merged Transcript Location at Genome Build T2T

Description

Merged Transcript Location at Genome Build T2T

Format

A data.table

Source

from T2T study.

Examples

data(transcript.T2T)

Transform Copy Number Table

Description

Transform Copy Number Table

Usage

transform_seg_table(
  data,
  genome_build = c("hg19", "hg38", "T2T", "mm10", "mm9", "ce11"),
  ref_type = c("cytoband", "gene"),
  values_fill = NA,
  values_fn = function(x, ...) {
     round(mean(x, ...))
 },
  resolution_factor = 1L
)

Arguments

data

a CopyNumber object or a data.frame containing at least 'chromosome', 'start', 'end', 'segVal', 'sample' these columns.

genome_build

genome build version, used when data is a data.frame, should be 'hg19' or 'hg38'.

ref_type

annotation data type used for constructing matrix.

values_fill

Optionally, a (scalar) value that specifies what each value should be filled in with when missing.

This can be a named list if you want to apply different fill values to different value columns.

values_fn

Optionally, a function applied to the value in each cell in the output. You will typically use this when the combination of id_cols and names_from columns does not uniquely identify an observation.

This can be a named list if you want to apply different aggregations to different values_from columns.

resolution_factor

an integer to control the resolution. When it is 1 (default), compute frequency in each cytoband. When it is 2, use compute frequency in each half cytoband.

Value

a data.table.

Examples

load(system.file("extdata", "toy_copynumber.RData",
  package = "sigminer", mustWork = TRUE
))
# Compute the mean segVal in each cytoband
x <- transform_seg_table(cn, resolution_factor = 1)
x
# Compute the mean segVal in each half-cytoband
x2 <- transform_seg_table(cn, resolution_factor = 2)
x2

Set Color Style for Plotting

Description

Set Color Style for Plotting

Usage

use_color_style(
  style,
  mode = c("SBS", "copynumber", "DBS", "ID", "RS"),
  method = "Wang"
)

Arguments

style

one of 'default' and 'cosmic'.

mode

only used when the style is 'cosmic', can be one of "SBS", "copynumber", "DBS", "ID".

method

used to set a more custom palette for different methods.

Value

color values.

Examples

use_color_style("default")
use_color_style("cosmic")