Title: | Regression Model Processing Port |
---|---|
Description: | Provides R6 classes, methods and utilities to construct, analyze, summarize, and visualize regression models. |
Authors: | Shixiang Wang [aut, cre] |
Maintainer: | Shixiang Wang <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.3.0 |
Built: | 2024-10-26 03:55:54 UTC |
Source: | https://github.com/ShixiangWang/regport |
Contains fields storing data and methods to build, process and visualize a regression model. Currently, this class is designed for CoxPH and GLM regression models.
data
a data.table
storing modeling data.
recipe
an R formula
storing model formula.
terms
all terms (covariables, i.e. columns) used for building model.
args
other arguments used for building model.
model
a constructed model.
type
model type (class).
result
model result, a object of parameters_model
. Can be converted into
data.frame with as.data.frame()
or data.table::as.data.table()
.
forest_data
more detailed data used for plotting forest.
new()
Build a REGModel
object.
REGModel$new( data, recipe, ..., f = c("coxph", "binomial", "gaussian", "Gamma", "inverse.gaussian", "poisson", "quasi", "quasibinomial", "quasipoisson"), exp = NULL, ci = 0.95 )
data
a data.table
storing modeling data.
recipe
an R formula
or a list with two elements 'x' and 'y',
where 'x' is for covariables and 'y' is for label. See example for detail
operation.
...
other parameters passing to corresponding regression model function.
f
a length-1 string specifying modeling function or family of glm()
, default is 'coxph'.
Other options are members of GLM family, see stats::family()
.
'binomial' is logistic, and 'gaussian' is linear.
exp
logical, indicating whether or not to exponentiate the the coefficients.
ci
confidence Interval (CI) level. Default to 0.95 (95%).
e.g. survival::coxph()
.
a REGModel
R6 object.
get_forest_data()
get tidy data for plotting forest.
REGModel$get_forest_data(separate_factor = FALSE, global_p = FALSE)
separate_factor
separate factor/class as a blank row.
global_p
if TRUE
, return global p value.
plot_forest()
plot forest.
REGModel$plot_forest(ref_line = NULL, xlim = NULL, ...)
ref_line
reference line, default is 1
for HR.
xlim
limits of x axis.
...
other plot options passing to forestploter::forest()
.
Also check https://github.com/adayim/forestploter to see more complex adjustment of the result plot.
plot()
print the REGModel$result
with default plot methods from see package.
REGModel$plot(...)
...
other parameters passing to plot()
in see:::plot.see_parameters_model
function.
print()
print the REGModel
object
REGModel$print(...)
...
unused.
clone()
The objects of this class are cloneable with this method.
REGModel$clone(deep = FALSE)
deep
Whether to make a deep clone.
library(survival) test1 <- data.frame( time = c(4, 3, 1, 1, 2, 2, 3), status = c(1, 1, 1, 0, 1, 1, 0), x = c(0, 2, 1, 1, 1, 0, 0), sex = c(0, 0, 0, 0, 1, 1, 1) ) test1$sex <- factor(test1$sex) # -------------- # Build a model # -------------- # way 1: mm <- REGModel$new( test1, Surv(time, status) ~ x + strata(sex) ) mm as.data.frame(mm$result) if (require("see")) mm$plot() mm$print() # Same as print(mm) # way 2: mm2 <- REGModel$new( test1, recipe = list( x = c("x", "strata(sex)"), y = c("time", "status") ) ) mm2 # Add other parameters, e.g., weights # For more, see ?coxph mm3 <- REGModel$new( test1, recipe = list( x = c("x", "strata(sex)"), y = c("time", "status") ), weights = c(1, 1, 1, 2, 2, 2, 3) ) mm3$args # ---------------------- # Another type of model # ---------------------- library(stats) counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12) outcome <- gl(3, 1, 9) treatment <- gl(3, 3) data <- data.frame(treatment, outcome, counts) mm4 <- REGModel$new( data, counts ~ outcome + treatment, f = "poisson" ) mm4 mm4$plot_forest() mm4$get_forest_data() mm4$plot_forest()
library(survival) test1 <- data.frame( time = c(4, 3, 1, 1, 2, 2, 3), status = c(1, 1, 1, 0, 1, 1, 0), x = c(0, 2, 1, 1, 1, 0, 0), sex = c(0, 0, 0, 0, 1, 1, 1) ) test1$sex <- factor(test1$sex) # -------------- # Build a model # -------------- # way 1: mm <- REGModel$new( test1, Surv(time, status) ~ x + strata(sex) ) mm as.data.frame(mm$result) if (require("see")) mm$plot() mm$print() # Same as print(mm) # way 2: mm2 <- REGModel$new( test1, recipe = list( x = c("x", "strata(sex)"), y = c("time", "status") ) ) mm2 # Add other parameters, e.g., weights # For more, see ?coxph mm3 <- REGModel$new( test1, recipe = list( x = c("x", "strata(sex)"), y = c("time", "status") ), weights = c(1, 1, 1, 2, 2, 2, 3) ) mm3$args # ---------------------- # Another type of model # ---------------------- library(stats) counts <- c(18, 17, 15, 20, 10, 20, 25, 13, 12) outcome <- gl(3, 1, 9) treatment <- gl(3, 3) data <- data.frame(treatment, outcome, counts) mm4 <- REGModel$new( data, counts ~ outcome + treatment, f = "poisson" ) mm4 mm4$plot_forest() mm4$get_forest_data() mm4$plot_forest()
Contains fields storing data and methods to build, process and visualize a list of regression model. Currently, this class is designed for CoxPH and GLM regression models.
data
a data.table
storing modeling data.
x
focal variables (terms).
y
predicted variables or expression.
covars
covariables.
mlist
a list of REGModel
.
args
other arguments used for building model.
type
model type (class).
result
model result, a object of parameters_model
. Can be converted into
data.frame with as.data.frame()
or data.table::as.data.table()
.
forest_data
more detailed data used for plotting forest.
new()
Create a REGModelList
object.
REGModelList$new(data, y, x, covars = NULL)
data
a data.table
storing modeling data.
y
predicted variables or expression.
x
focal variables (terms).
covars
covariables.
a REGModelList
R6 object.
build()
Build REGModelList
object.
REGModelList$build( f = c("coxph", "binomial", "gaussian", "Gamma", "inverse.gaussian", "poisson", "quasi", "quasibinomial", "quasipoisson"), exp = NULL, ci = 0.95, parallel = FALSE, ... )
f
a length-1 string specifying modeling function or family of glm()
, default is 'coxph'.
Other options are members of GLM family, see stats::family()
.
'binomial' is logistic, and 'gaussian' is linear.
exp
logical, indicating whether or not to exponentiate the the coefficients.
ci
confidence Interval (CI) level. Default to 0.95 (95%).
e.g. survival::coxph()
.
parallel
if TRUE
, use N-1 cores to run the task.
...
other parameters passing to corresponding regression model function.
a REGModel
R6 object.
plot_forest()
plot forest.
REGModelList$plot_forest( ref_line = NULL, xlim = NULL, vars = NULL, p = NULL, ... )
ref_line
reference line, default is 1
for HR.
xlim
limits of x axis.
vars
selected variables to show.
p
selected variables with level' pvalue lower than p.
...
other plot options passing to forestploter::forest()
.
Also check https://github.com/adayim/forestploter to see more complex adjustment of the result plot.
print()
print the REGModelList
object
REGModelList$print(...)
...
unused.
clone()
The objects of this class are cloneable with this method.
REGModelList$clone(deep = FALSE)
deep
Whether to make a deep clone.
ml <- REGModelList$new( data = mtcars, y = "mpg", x = c("factor(cyl)", colnames(mtcars)[3:5]), covars = c(colnames(mtcars)[8:9], "factor(gear)") ) ml ml$print() ml$plot_forest() ml$build(f = "gaussian") ## Not run: ml$build(f = "gaussian", parallel = TRUE) ## End(Not run) ml$print() ml$result ml$forest_data ml$plot_forest()
ml <- REGModelList$new( data = mtcars, y = "mpg", x = c("factor(cyl)", colnames(mtcars)[3:5]), covars = c(colnames(mtcars)[8:9], "factor(gear)") ) ml ml$print() ml$plot_forest() ml$build(f = "gaussian") ## Not run: ml$build(f = "gaussian", parallel = TRUE) ## End(Not run) ml$print() ml$result ml$forest_data ml$plot_forest()