Package 'ezcox'

Title: Easily Process a Batch of Cox Models
Description: A tool to operate a batch of univariate or multivariate Cox models and return tidy result.
Authors: Shixiang Wang [aut, cre]
Maintainer: Shixiang Wang <[email protected]>
License: GPL-3
Version: 1.0.4
Built: 2024-11-19 04:56:28 UTC
Source: https://github.com/ShixiangWang/ezcox

Help Index


Clean ezcox Model File Directory

Description

Clean ezcox Model File Directory

Usage

clean_model_dir(model_dir = file.path(tempdir(), "ezcox"))

Arguments

model_dir

a path for storing model results.

Value

nothing

Examples

clean_model_dir()

Run Cox Analysis in Batch Mode

Description

Run Cox Analysis in Batch Mode

Usage

ezcox(
  data,
  covariates,
  controls = NULL,
  time = "time",
  status = "status",
  global_method = c("likelihood", "wald", "logrank"),
  keep_models = FALSE,
  return_models = FALSE,
  model_dir = file.path(tempdir(), "ezcox"),
  verbose = TRUE,
  ...
)

Arguments

data

a data.frame containing variables, time and os status.

covariates

column names specifying variables.

controls

column names specifying controls. The names with pattern "*:|()" will be treated as interaction/combination term, please make sure all column names in data are valid R variable names.

time

column name specifying time, default is 'time'.

status

column name specifying event status, default is 'status'.

global_method

method used to obtain global p value for cox model, should be one of "likelihood", "wald", "logrank". The likelihood-ratio test, Wald test, and score logrank statistics. These three methods are asymptotically equivalent. For large enough N, they will give similar results. For small N, they may differ somewhat. The Likelihood ratio test has better behavior for small sample sizes, so it is generally preferred.

keep_models

If TRUE, keep models as local files.

return_models

default FALSE. If TRUE, return a list contains cox models.

model_dir

a path for storing model results.

verbose

if TRUE, print extra info.

...

other parameters passing to survival::coxph().

Value

a ezcox object

Author(s)

Shixiang Wang [email protected]

Examples

library(survival)

# Build unvariable models
t1 <- ezcox(lung, covariates = c("age", "sex", "ph.ecog"))
t1

# Build multi-variable models
# Control variable 'age'
t2 <- ezcox(lung, covariates = c("sex", "ph.ecog"), controls = "age")
t2

# Return models
t3 <- ezcox(lung,
  covariates = c("age", "sex", "ph.ecog"),
  return_models = TRUE
)
t3
t4 <- ezcox(lung,
  covariates = c("sex", "ph.ecog"), controls = "age",
  return_models = TRUE
)
t4

Group Cox Analysis and Visualization

Description

Group Cox Analysis and Visualization

Usage

ezcox_group(
  data,
  grp_var,
  covariate,
  controls = NULL,
  time = "time",
  status = "status",
  sort = FALSE,
  decreasing = TRUE,
  add_all = FALSE,
  add_caption = TRUE,
  verbose = TRUE,
  headings = list(variable = "Group", n = "N", measure = "Hazard ratio", ci = NULL, p =
    "p"),
  ...
)

Arguments

data

a data.frame containing variables, time and os status.

grp_var

a group column.

covariate

a covariable for cox analysis.

controls

column names specifying controls. The names with pattern "*:|()" will be treated as interaction/combination term, please make sure all column names in data are valid R variable names.

time

column name specifying time, default is 'time'.

status

column name specifying event status, default is 'status'.

sort

if TRUE, sort the models by the HR values.

decreasing

logical, should the sort order be increasing or decreasing?

add_all

if TRUE, add a group for all data rows.

add_caption

if TRUE, add caption to the plot.

verbose

if TRUE, print extra info.

headings

a list for setting the heading text.

...

other arguments passing to forestmodel::forest_model().

Value

a list.

Examples

library(survival)
ezcox_group(lung, grp_var = "sex", covariate = "ph.ecog")
ezcox_group(lung, grp_var = "sex", covariate = "ph.ecog", controls = "age")
p <- ezcox_group(lung,
  grp_var = "sex", covariate = "ph.ecog",
  controls = "age", add_all = TRUE
)

Parallelly Run Cox Analysis in Batch Mode

Description

Parallelly Run Cox Analysis in Batch Mode

Usage

ezcox_parallel(
  data,
  covariates,
  controls = NULL,
  time = "time",
  status = "status",
  batch_size = 100,
  global_method = c("likelihood", "wald", "logrank"),
  keep_models = FALSE,
  return_models = FALSE,
  model_dir = file.path(tempdir(), "ezcox"),
  parallel = TRUE,
  verbose = FALSE
)

Arguments

data

a data.frame containing variables, time and os status.

covariates

column names specifying variables.

controls

column names specifying controls.

time

column name specifying time, default is 'time'.

status

column name specifying event status, default is 'status'.

batch_size

processing size in a batch.

global_method

method used to obtain global p value for cox model, should be one of "likelihood", "wald", "logrank". The likelihood-ratio test, Wald test, and score logrank statistics. These three methods are asymptotically equivalent. For large enough N, they will give similar results. For small N, they may differ somewhat. The Likelihood ratio test has better behavior for small sample sizes, so it is generally preferred.

keep_models

If TRUE, keep models as local files.

return_models

default FALSE. If TRUE, return a list contains cox models.

model_dir

a path for storing model results.

parallel

if TRUE, do parallel computation by furrr package.

verbose

if TRUE, print extra info. If parallel is TRUE, set verbose to FALSE may speed up.

Value

a ezcox object

Author(s)

Shixiang Wang [email protected]

Examples

library(survival)
t <- ezcox_parallel(lung, covariates = c("sex", "ph.ecog"), controls = "age")
t

Filter ezcox

Description

Filter ezcox

Usage

filter_ezcox(x, levels = "auto", type = c("both", "contrast", "ref"))

Arguments

x

a ezcox object from ezcox().

levels

levels to filter, default is 'auto', it will filter all control variables.

type

default is 'both' for filtering both contrast level and reference level. It can also be 'contrast' for filtering only contrast level and 'ref' for filtering only reference level.

Value

a ezcox object

Author(s)

Shixiang Wang [email protected]

Examples

library(survival)
lung$ph.ecog <- factor(lung$ph.ecog)
zz <- ezcox(lung, covariates = c("sex", "age"), controls = "ph.ecog")
zz
filter_ezcox(zz)
filter_ezcox(zz, c("0", "2"))
filter_ezcox(zz, c("0", "2"), type = "contrast")
t <- filter_ezcox(zz, c("0", "2"), type = "ref")
t

Create a forest plot for simple data

Description

Create a forest plot for simple data

Usage

forester(
  data,
  display_cols = c("Variable", "HR", "lower_95", "upper_95"),
  estimate_precision = 2,
  null_line_at = 1,
  font_family = "mono",
  x_scale_linear = TRUE,
  xlim = NULL,
  xbreaks = NULL,
  point_sizes = 3,
  point_shape = 16,
  label_hjust = 0,
  label_vjust = -1,
  label_color = "blue",
  label_size = 3
)

Arguments

data

Data frame (required). The information to be displayed as the forest plot.

display_cols

4 columns stand for axis text and the forest data, default using c("term", "HR", "conf.low", "conf.high").

estimate_precision

Integer. The number of decimal places on the estimate (default 2).

null_line_at

Numeric. Default 0. Change to 1 if using relative measures such as OR, RR.

font_family

String. The font to use for the ggplot. Default "mono".

x_scale_linear

Logical. Default TRUE, change to FALSE for log scale

xlim

Vector. Manually specify limits for the x axis as a vector length 2, i.e. c(low, high)

xbreaks

Vector. X axis breaks to label. Specify limits in xlim if using this option.

point_sizes

Vector. Length should be equal to 1 or nrow(left_side_data). The sizes of the points in the center plot, where 3.25 is the default.

point_shape

Vector. Length should be equal to 1 or nrow(left_side_data). The shapes of the points in the center plot, where 16 (a filled circle) is the default.

label_hjust, label_vjust, label_color, label_size

hjust, vjust color and size for the label text.

Value

a ggplot object.

Examples

library(survival)

t1 <- ezcox(lung, covariates = c(
  "age", "sex",
  "ph.karno", "pat.karno"
))
p <- forester(t1, xlim = c(0, 1.5))
p
p2 <- forester(t1, xlim = c(0.5, 1.5))
p2

Get Model List from ezcox Object

Description

Models are renamed by the formulas.

Usage

get_models(x, variables = NULL)

Arguments

x

a ezcox object from ezcox().

variables

a character vector representing variables to select.

Value

a named list with class ezcox_models

Examples

library(survival)
zz <- ezcox(lung, covariates = c("sex", "ph.ecog"), controls = "age", return_models = TRUE)
mds <- get_models(zz)
str(mds, max.level = 1)

Show Forest Plot

Description

This is a wrapper of function ezcox, get_models and show_models. It focus on generating forest plot easily and flexibly.

Usage

show_forest(
  data,
  covariates,
  controls = NULL,
  time = "time",
  status = "status",
  merge_models = FALSE,
  model_names = NULL,
  vars_to_show = NULL,
  drop_controls = FALSE,
  add_caption = TRUE,
  point_size = 3,
  point_shape = 15,
  color = "red",
  banded = TRUE,
  headings = list(variable = "Variable", n = "N", measure = "Hazard ratio", ci = NULL, p
    = "p"),
  model_dir = file.path(tempdir(), "ezcox"),
  verbose = TRUE,
  ...
)

Arguments

data

a data.frame containing variables, time and os status.

covariates

a character vector optionally listing the variables to include in the plot (defaults to all variables).

controls

column names specifying controls. The names with pattern "*:|()" will be treated as interaction/combination term, please make sure all column names in data are valid R variable names.

time

column name specifying time, default is 'time'.

status

column name specifying event status, default is 'status'.

merge_models

if 'TRUE', merge all models and keep the plot tight.

model_names

model names to show when merge_models=TRUE.

vars_to_show

default is NULL, show all variables (including controls). You can use this to choose variables to show, but remember, the models have not been changed.

drop_controls

works when covariates=NULL and models is a ezcox_models, if TRUE, it removes control variables automatically.

add_caption

if TRUE, add caption to the plot.

point_size

size of point.

point_shape

shape value of point.

color

color for point and segment.

banded

if TRUE (default), create banded background color.

headings

a list for setting the heading text.

model_dir

a path for storing model results.

verbose

if TRUE, print extra info.

...

other arguments passing to forestmodel::forest_model().

Value

a ggplot object

Examples

library(survival)
show_forest(lung, covariates = c("sex", "ph.ecog"), controls = "age")
show_forest(lung, covariates = c("sex", "ph.ecog"), controls = "age", merge_models = TRUE)
show_forest(lung,
  covariates = c("sex", "ph.ecog"), controls = "age", merge_models = TRUE,
  drop_controls = TRUE
)
p <- show_forest(lung,
  covariates = c("sex", "ph.ecog"), controls = "age", merge_models = TRUE,
  vars_to_show = "sex"
)
p

Show Cox Models

Description

Show Cox Models

Usage

show_models(
  models,
  model_names = NULL,
  covariates = NULL,
  merge_models = FALSE,
  drop_controls = FALSE,
  headings = list(variable = "Variable", n = "N", measure = "Hazard ratio", ci = NULL, p
    = "p"),
  ...
)

Arguments

models

a ezcox_models from get_models() or a (named) list of Cox models.

model_names

model names to show when merge_models=TRUE.

covariates

a character vector optionally listing the variables to include in the plot (defaults to all variables).

merge_models

if 'TRUE', merge all models and keep the plot tight.

drop_controls

works when covariates=NULL and models is a ezcox_models, if TRUE, it removes control variables automatically.

headings

a list for setting the heading text.

...

other arguments passing to forestmodel::forest_model().

Value

a ggplot object

Examples

library(survival)
zz <- ezcox(lung, covariates = c("sex", "ph.ecog"), controls = "age", return_models = TRUE)
mds <- get_models(zz)
show_models(mds)
show_models(mds, model_names = paste0("Model ", 1:2))
show_models(mds, covariates = c("sex", "ph.ecog"))
show_models(mds, drop_controls = TRUE)
show_models(mds, merge_models = TRUE)
p <- show_models(mds, merge_models = TRUE, drop_controls = TRUE)
p